口述影像机器翻译之有效性评估:英-荷翻译的两个实验性研究
摘要
翻译领域正在经历深刻的变化。新技术的出现及其不断发展正在重塑翻译活动。随着社会的发展及法律规范的变更,新创建的产品与内容全球用户均可分享,种种新的翻译形式随之出现,其中之一即为口述影像 (AD) 翻译,一项旨在为视障人士提供无障碍使用视听内容的服务。新法规要求迟至2025年所有语音指南配套内容均须到位。鉴于目前口述影像专业人员数额有限,达成此目标任务艰巨。一个可能的解决方案是使用机器翻译将现有的口述影像译为其他语言。由于AD 具有句子短小,语言简单具体等特点,十分符合机器翻译的要求。本研究旨在用英语到荷兰语的机器翻译对这一假设进行测试。我们首先使用DeepL翻译器将用英语制作的不同荷兰电影中三个时长为30分钟的口述影像译成荷兰语,然后使用动态质量框架 - 维质量指标((DQF-MQM) 统一标准对译文进行分析,同时兼顾源文本多模态特质及原文描述过程中的符际维度。分析结果显示机器翻译输出文本的错误率相对较高,在精准度/误译及流畅度/语法两个分项中尤为明显。这似乎表明机器翻译文本需经大量的后期编辑才能用于专业环境。
关键词
无障碍资源, 口述影像 , 机器翻译, 翻译参考
Álvarez Muniain, A.; Balenciaga, M.; Pozo Echezarreta, A. D.; Arzelus Irazusta, H.; Matamala, A.; Martínez Hinarejos, C. D. (2016). Impact of automatic segmentation on the quality, productivity and self-reported post-editing effort of intralingual subtitles. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association (ELRA), pp. 3049-3053. <https://aclanthology.org/L16-1487/>. [Accessed: 20211116].
Arma, S. (2011). The Language of filmic audio description. PhD dissertation. Napoli: Universita Degli Studi di Napoli Federico II.
Bahdanau, D.; Cho, K. H.; Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. Paper presented at 3rd International Conference on Learning Representations, ICLR 2015, San Diego.
Banerjee, S.; Lavie, A. (2005). METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization. Association for Computational Linguistics, pp. 65-72. <https://aclanthology.org/W05-0909/>. [Accessed: 20211116].
Bawden, R.; Sennrich, R.; Birch, A.; Haddow, B. (2018). Evaluating discourse phenomena in neural machine translation. In: Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, pp. 1304-1313. <https://doi.org/10.18653/v1/N18-1118>. [Accessed: 20211116].
Bourne, J.; Hurtado, C. (2007). From the Visual to the Verbal in two Languages: a contrastive analysis of the audio description of The Hours in English and Spanish. In: Diaz-Cintas, J.; Orero, P.; Remael, A. (eds.). Media for all: Subtitling for the Deaf, Audio Description, and Sign Language. Amsterdam: Rodopi.
Bryssinck, J. (2019). The (semi) automatic translation of audio descriptions: an exploratory study. [MA thesis]. University of Antwerp.
Bywood, L.; Georgakopoulou, P.; Etchegoyhen, T. (2017). Embracing the threat: machine translation as a solution for subtitling. Perspectives: Studies in Translation Theory and Practice, v. 25, n. 3, pp. 492–508. <https://doi.org/10.1080/0907676X.2017.1291695>. [Accessed: 20211116].
Castilho, S.; Doherty, S.; Gaspari, F.; Moorkens, J. (2018). Approaches to human and machine translation quality assessment. In: Moorkens, J.; Castilho, S.; Gaspari, F.; Doherty, S. (eds.). Translation quality assessment: From principles to practice. Cham: Springer, pp. 9-38. <https://doi.org/10.1007/978-3-319-91241-7_2>. [Accessed: 20211116].
Castilho, S.; Moorkens, J.; Gaspari, F.; Sennrich, R.; Way, A.; Georgakopoulou, P. (2018). Evaluating MT for massive open online courses. Machine Translation, v. 32, n. 3, pp. 255–278. <https://doi.org/10.1007/s10590-018-9221-y>. [Accessed: 20211116].
Cho, K.; Van Merrienboer, B.; Gulcehre, C.; Bougares, F.; Schwenk, H.; Bengio, Y. (2014a). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, pp. 1724–1734. <https://doi.org/10.3115/v1/D14-1179>. [Accessed: 20211116].
Del Pozo, A. (2014). Sumat: An Online Service for Subtitling by Machine Translation. Sumat website. <http://www.fp7-sumat-project.eu/>. [Accessed: 20211116].
Etchegoyhen, T.; Bywood, L.; Fishel, M.; Georgakopoulou, P.; Jiang, J.; Van Loenhout, G.; Del Pozo, A.; Sepesy Maucec, M.; Turner, A.; Volk, M. (2014). Machine translation for subtitling: A large-scale evaluation. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC14). European Language Resources Association, pp. 46–53. <https://aclanthology.org/L14-1392/>. [Accessed: 20211116].
Fernández-Torné, A. (2016). Machine translation evaluation through post-editing measures in audio description. InTRAlinea: online translation journal v. 18. <https://www.intralinea.org/index.php/archive/article/machine_translation_evaluation_through_post_editing_measures_in_audio_descr>. [Accessed: 20211116].
Fernández-Torné, A.; Matamala, A. (2016). Machine translation in audio description? Comparing creation, translation and post-editing efforts. SKASE Journal of Translation and Interpretation, v. 9, n. 1, pp. 64–87. <http://www.skase.sk/JTI10index.html>. [Accessed: 20211116].
Guerberof-Arenas, A.; Toral, A. (2020). The impact of post-editing and machine translation on creativity and reading experience. Translation Spaces, v. 9, n. 2, pp. 255–282. <https://doi.org/10.1075/ts.20035.gue>. [Accessed: 20211116].
Herrador Molina, D. (2006). La Traducción de guiones de audiodescripción del inglés al español. [Proyecto fin de carrera]. Universidad de Granada.
Jankowska, A. (2015). Translating audio description scripts: translation as a new strategy of creating audio description. London [etc.]: Peter Lang.
Jankowska, A.; Milc, M.; Fryer, L. (2017). Translating audio description scripts… into English. SKASE Journal of Translation and Interpretation, v. 10, n. 2, pp. 2–16. <http://www.skase.sk/JTI13index.html>. [Accessed: 20211116].
Liu, Y.; Tor-Carroggio, I.; Rovira-Esteva, S.; Casas-Tost, H. (2021). Localisation guidelines for translating AD from Spanish into Chinese: A first proposal. [Paper presentation]. Advanced research seminar on audio description, January 26-27.
Lommel, A. (2018). Metrics for translation quality assessment: A case for standardising error typologies. In: Moorkens, J.; Castilho, S.; Gaspari, F.; Doherty, S. (eds.). Translation quality assessment: From principles to practice. Cham: Springer, pp. 109-127. <https://doi.org/10.1007/978-3-319-91241-7_6>. [Accessed: 20211116].
Lopez Vera, J. F. (2006). Translating Audio Description Scripts: The Way Forward?:Tentative First Stage Project Results. In: MuTra 2006: Audiovisual Translation Scenarios Conference Proceedings: Audiovisual Translation Scenarios, pp. 1-10. <https://www.euroconferences.info/proceedings/2006_Proceedings/2006_proceedings.html>. [Accessed: 20211116].
Mälzer, N.; Schaeffer-Lacroix, E. (2021). The French-German TADS project: A multi method approach to the translation of AD scripts [Paper presentation]. Advanced research seminar on audio description, online, January 26-27. <https://grupsderecerca.uab.cat/arsad/node/149>. [Accessed: 20211116].
Macken, L.; Fonteyne, M.; Tezcan, A.; Daems, J. (2020). Assessing the comprehensibility of automatic translations (ArisToCAT). In: Proceedings of the 22nd Annual Conference of the European Association for Machine Translation (EAMT2020). European Association for Machine Translation, pp. 485-486. <https://aclanthology.org/2020.eamt-1.64/>. [Accessed: 20211116].
Matamala, A.; Ortiz- Boix, C. (2016). Accessibility and multilingualism: an exploratory study on the machine translation of audio descriptions. TRANS, n. 20, pp. 11–24. <https://doi.org/10.24310/TRANS.2016.v0i20.2059>. [Accessed: 20211116].
Matusov, E.; Wilken, P.; Georgakopoulou, P. (2019). Customizing neural machine translation for subtitling. In: Proceedings of the Fourth Conference on Machine Translation: Vol 1., Research Papers. Association for Computational Linguistics, pp. 82-93. <https://doi.org/10.18653/v1/W19-5209>. [Accessed: 20211116].
O’Hagan, M. (2019). The Routledge Handbook of Translation and Technology. London [etc.]: Routledge. <https://doi.org/10.4324/9781315311258>. [Accessed: 20211116].
O’Hagan, M. (2020). Introduction: Translation and technology: disruptive entanglement of human and machine. In: O’Hagan, M. (ed.). The Routledge Handbook of Translation and Technology. London [etc.]: Routledge, pp. 1-8. <https://doi.org/10.4324/9781315311258-1>. [Accessed: 20211116].
Papineni, K.; Roukos, S.; Ward, T.; Zhu, W. J. (2002). BLEU: a method for automatic evaluation of machine translation. In: ACL’02: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. <https://doi.org/10.3115/1073083.1073135>. [Accessed: 20211116].
Pedersen, J. (2008). High felicity: A speech act approach to quality assessment in subtitling. In: Chiaro, D.; Heiss, C.; Bucaria C. Between text and image: updating research in screen translation. Amsterdam: John Benjamins, pp. 101-115. <https://doi.org/10.1075/btl.78.11ped>. [Accessed: 20211116].
Popović, M. (2015). chrF: character n-gram F-score for automatic MT evaluation. In: Proceedings of the Tenth Workshop on Statistical Machine Translation. Association for Computational Linguistics, pp. 392-395. <https://doi.org/10.18653/v1/W15-3049>. [Accessed: 20211116].
Popović, M. (2018). Error classification and analysis for machine translation quality assessment. In: Moorkens, J.; Castilho, S.; Gaspari, F.; Doherty, S. (eds.). Translation quality assessment: From principles to practice. Cham: Springer, pp. 129-158. <https://doi.org/10.1007/978-3-319-91241-7_7>. [Accessed: 20211116].
Remael, A.; Vercauteren, G. (2010). The translation of recorded audio description from English into Dutch. Perspectives: Studies in Translation Theory and Practice, v. 18, n. 3, pp. 155–171. <https://doi.org/10.1080/0907676X.2010.485684>. [Accessed: 20211116].
Reviers, N. (2016). Audio description services in Europe: an update. JoSTrans, The Journal of Specialised Translation, n. 26, pp. 232-247. <https://www.jostrans.org/issue26/art_reviers.pdf>. [Accessed: 20211116].
Reviers, N. (2018a). Audio description in Dutch: A corpus-based study into the linguistic features of a new, multimodal text type. (PhD Book). University of Antwerp. <https://explore.lib.uliege.be/discovery/fulldisplay/alma9919943602602321/32ULG_INST:MOSA>. [Accessed: 20211116].
Reviers, N. (2018b). Tracking multimodal cohesion in Audio Description: Examples from a Dutch audio description corpus. Linguistica Antverpiensia, New Series: Themes in Translation Studies, v. 17, pp. 22-35. <https://doi.org/10.52034/lanstts.v17i0>. [Accessed: 20211116].
Salway, A. (2004). AuDesc System Specification and Prototypes. TIWO: Television in Words. University of Surrey. <https://andrewsalway.files.wordpress.com/2020/02/tiwo_television_in_words_deliverable_3-1.pdf>. [Accessed: 20211116].
Salway, A. (2007). A corpus based analysis of audio description. In: Diaz-Cintas, J.; Orero, P.; Remael, A. (eds.). Media for all: Subtitling for the deaf, Audio Description and Sign Language. Amsterdam [etc.]: Rodopi, pp. 151-174. <https://doi.org/10.1163/9789401209564_012>. [Accessed: 20211116].
Shterionov, D.; Superbo, R.; Nagle, P.; Casanellas, L.; O’Dowd, T.; Way, A. (2018). Human versus automatic quality evaluation of NMT and PBSMT. Machine Translation, v. 32, n. 3, pp. 217–235. <https://doi.org/10.1007/s10590-018-9220-z>. [Accessed: 20211116].
Sulubacak, U.; Caglayan, O.; Grönroos, S.A.; Rouhe, A.; Elliot, D.; Specia, L.; Tiedemann, J. (2020). Multimodal machine translation through visuals and speech. Machine Translation, v. 34, pp. 97–147. <https://doi.org/10.1007/s10590-020-09250-0>. [Accessed: 20211116].
TAUS. (2021). Harmonized DQF-MQM Error Typology. <https://www.taus.net/qt21-project#harmonized-error-typology>. [Accessed: 20211116].
Tiedemann, J.; Scherrer, Y. (2017). Neural machine translation with extended context. In: Proceedings of the Third Workshop on Discourse in Machine Translation (DISCOMT’17). Association for Computational Linguistics, pp. 82-92. <https://doi.org/10.18653/v1/W17- 4811>. [Accessed: 20211116].
Toral, A.; Way, A. (2018). What level of quality can neural machine translation attain on literary text? In: Moorkens, J.; Castilho, S.; Gaspari, F.; Doherty, S. (eds.). Translation quality assessment: From principles to practice. Cham: Springer, pp. 263-287. <https://doi.org/10.1007/978-3-319-91241-7_12>. [Accessed: 20211116].
Uiterwijk, G. (2019). The (semi) automatic translation of audio descriptions: an exploratory study. [MA thesis] University of Antwerp.
Vercauteren, G. (2007). Towards a European guideline for audio description. In: Díaz-Cintas, J.; Orero, P.; Remael, A. (dds.). Media for All: Subtitling for the Deaf, Audio Description, and Sign Language (pp. 139–150). Amsterdam: Rodopi, pp. 139-150. <https://doi.org/10.1163/9789401209564_011>. [Accessed: 20211116].
Voita, E.; Serdyukov, P.; Sennrich, R.; Titov, I. (2018). Context-aware neural machine translation learns anaphora resolution. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers). Association for Computational Linguistics, pp. 1264-1274. <https://doi.org/10.18653/v1/P18-1117>. [Accessed: 20211116].
Volk, M.; Sennrich, R.; Hardmeier, C.; Tidström, F. (2010). Machine translation of TV subtitles for large scale production. Paper presented at the 2nd joint EM+/CNGL Workshop Bringing MT to the user: research on integrating MT in the translation industry. Denver, Colorado.
已出版
Downloads
Copyright (c) 2021 Gert Vercauteren, Nin Reviers, Kim Steyaert

This work is licensed under a Creative Commons Attribution 4.0 International License.