Gestió de la qualitat de la traducció a l'era de la IA. Noves tecnologies per realitzar operacions que asseguren la qualitat de la traducció
Resum
Aquest article presenta una selecció d'algunes de les últimes tecnologies i eines per dur a terme tasques que asseguren la qualitat de la traducció mitjançant la intel·ligència artificial, l’aprenentatge automàtic i l’automatització. També parla de l'impacte d'aquests avenços tecnològics en les últimes tendències de recerca acadèmica i la indústria de la traducció i la localització.
Paraules clau
qualitat de la traducció, avaluació de la qualitat, estimació de la qualitat, control de qualitat, gestió de la qualitat, indústria de la traducció, IA, tecnologies de la traduccióReferències
Birch, A., Abend, O., Bojar, O., & Haddow, B. (2016). Hume: Human UCCA-based evaluation of machine translation. EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings, 1264–1274. https://doi.org/10.18653/v1/d16-1134
Bojar, O., Federmann, C., Haddow, B., Koehn, P., Post, M., & Specia, L. (2016). Ten Years of WMT Evaluation Campaigns: Lessons Learnt. Proceedings of the LREC 2016 Workshop “Translation Evaluation – From Fragmented Tools and Data Sets to an Integrated Ecosystem.” http://www.statmt.org/wmt16
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference.
Doherty, S. (2016). The impact of translation technologies on the process and product of translation. International Journal of Communication, 10, 947–969.
Doherty, S., Moorkens, J., Gaspari, F., & Castilho, S. (2018). On Education and Training in Translation Quality Assessment. In J. Moorkens, S. Castilho, F. Gaspari, & S. Doherty (Eds.), Translation Quality Assessment. Machine Translation: Technologies and Applications (Vol 1, pp. 95–106). Springer International Publishing. https://doi.org/10.1007/978-3-319-91241-7_5
Drugan, J., Strandvik, I., & Vuorinen, E. (2018). Translation Quality, Quality Management and Agency: Principles and Practice in the European Union Institutions. In J. Moorkens, S. Castilho, F. Gaspari, & S. Doherty (Eds.), Translation Quality Assessment. Machine Translation: Technologies and Applications (Vol 1, pp. 39–68). Springer. https://doi.org/10.1007/978-3-319-91241-7_3
Esselink, B. (2019). Multinational language service provider as user. In M. O’Hagan (Ed.), The Routledge Handbook of Translation and Technology (pp. 109–126). Routledge. https://doi.org/10.4324/9781315311258-7
Fields, P., Hague, D. R., Koby, G. S., Lommel, A., & Melby, A. (2014). What Is Quality? A Management Discipline and the Translation Industry Get Acquainted. Tradumàtica: Tecnologies de La Traducció, 12, 404. https://doi.org/10.5565/rev/tradumatica.75
Gekhman, Z., Aharoni, R., Beryozkin, G., Freitag, M., & Macherey, W. (2020). KoBE: Knowledge-Based Machine Translation Evaluation. https://arxiv.org/abs/2009.11027
Grave, E., Bojanowski, P., Gupta, P., Joulin, A., & Mikolov, T. (2018). Learning word vectors for 157 languages. In arXiv. https://scontent-lhr8-1.xx.fbcdn.net/v/t39.8562-6/78763243_741229253027887_5501082120891662336_n.pdf?_nc_cat=109&ccb=2&_nc_sid=ae5e01&_nc_ohc=5tYU-b2RCaEAX9P4yDR&_nc_ht=scontent-lhr8-1.xx&oh=a4d1f770bfbc3ecb9c884f4d0ca8aa59&oe=5FD7FEFF
House, J. (2015). Translation quality assessment: past and present. Routledge.
ISO. (2015). ISO 17100:2015 (en), Translation services — Requirements for translation services. https://www.iso.org/obp/ui/#iso:std:iso:17100:ed-1:v1:en
Jaworski, R. (2020a). Unlocking the Secrets of Language AI With Inter-language Vector Space. Slator. https://slator.com/sponsored-content/unlocking-secrets-language-ai-inter-language-vector-space/
Jaworski, R. (2020b). Assessing Cross-lingual Word Similarities Using Neural Networks Main challenges. Translation and the Computer TC42, 10.
Läubli, S., Castilho, S., Neubig, G., Sennrich, R., Shen, Q., & Toral, A. (2020). A set of recommendations for assessing human-machine parity in language translation. In Journal of Artificial Intelligence Research (Vol. 67, pp. 653–672). AI Access Foundation. https://doi.org/10.1613/JAIR.1.11371
Marr, B. (2020, August 10). What Is The Artificial Intelligence Revolution And Why Does It Matter To Your Business? Forbes. https://www.forbes.com/sites/bernardmarr/2020/08/10/what-is-the-artificial-intelligence-revolution-and-why-does-it-matter-to-your-business/
Mathur, N., Baldwin, T., & Cohn, T. (2020). Putting evaluation in context: Contextual Embeddings improve Machine Translation Evaluation. ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, 2799–2808. https://doi.org/10.18653/v1/p19-1269
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings. https://www.researchgate.net/publication/234131319_Efficient_Estimation_of_Word_Representations_in_Vector_Space
Muzii, L. (2014). The red-pen syndrome. Tradumàtica: Tecnologies de La Traducció, 12, 421. https://doi.org/10.5565/rev/tradumatica.68
Petrova, V. (2019). Translation Quality Assessment Tools and Processes in Relation to CAT Tools. Proceedings of the Human-Informed Translation and Interpreting Technology Workshop (HiT-IT) 2019, 89–97. https://doi.org/10.26615/issn.2683-0078.2019_011
Pielmeier, H. (2017). Using Big Data to Save Money on Translations - Our Analysts’ Insights. CSA Research. https://csa-research.com/Insights/ArticleID/167/Using-Big-Data-to-Save-Money-on-Translations
Pires, T., Schlinger, E., & Garrette, D. (2020). How multilingual is multilingual BERT? ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference. https://doi.org/10.18653/v1/p19-1493
Reddy, B. P., Bhusan, S., Sarkar, S., & Mukherjee, A. (2020). NwQM: A neural quality assessment framework for Wikipedia. http://arxiv.org/abs/2010.06969
Schwab, K. (2016). The Fourth Industrial Revolution: what it means and how to respond. World Economic Forum.
Sellam, T., Das, D., & Parikh, A. P. (2020). BLEURT: Learning Robust Metrics for Text Generation. In arXiv (pp. 7881–7892). https://doi.org/10.18653/v1/2020.acl-main.704
Sellam, T., Pu, A., Chung, H. W., Gehrmann, S., Tan, Q., Freitag, M., Das, D., & Parikh, A. P. (2020). Learning to Evaluate Translation Beyond English: BLEURT Submissions to the WMT Metrics 2020 Shared Task. http://arxiv.org/abs/2010.04297
Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., & Chanona-Hernández, L. (2014). Syntactic N-grams as machine learning features for natural language processing. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2013.08.015
Specia, L., & Shah, K. (2018). Machine Translation Quality Estimation: Applications and Future Perspectives. In J. Moorkens, S. Castilho, F. Gaspari, & S. Doherty (Eds.), Translation quality assessment: from principles to practice (pp. 201–235). Springer Science and Business Media LLC. https://doi.org/10.1007/978-3-319-91241-7_10
Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to Fine-Tune BERT for Text Classification? Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-030-32381-3_16
Zhang, J., Van Genabith, J., De, J. Z., Van, J., & De, G. (2020). Translation Quality Estimation by Jointly Learning to Score and Rank. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2592–2598. https://github.com/jingyiz/sentence-transformers
Zhu, J., Xia, Y., Wu, L., He, D., Qin, T., Zhou, W., Li, H., & Liu, T. Y. (2020). Incorporating bert into neural machine translation. In arXiv.
Publicades
Descàrregues
Drets d'autor (c) 2021 Jennifer Vela Valido
Aquesta obra està sota una llicència internacional Creative Commons Reconeixement 4.0.