Una disrupció incremental? La transició de la traducció automàtica estadística a la neuronal
Resum
Si la traducció automàtica estadística (TAE) va ser una tecnologia disruptiva, la traducció automàtica neuronal (TAN) probablement és una innovació incremental, que continua una trajectòria establerta per la TAE i que inicialment s'ha avaluat en gran part igual que la seva predecessora. Mirar la TAN des d'aquest punt de vista pot ser útil per matisar el bombo que envolta el seu sorgiment.Paraules clau
Innovació disruptiva, traducció automàtica, TA estadística, TA neuronal, mètriques per a la qualitat, mobilitat.Referències
Bentivogli, L., A. Bisazza, M. Cettolo and M. Federico. (2016b). "Neural versus Phrase-Based Machine Translation Quality: a Case Study", in EMNLP 2016. arXiv:1608.04631v1 [cs.CL] Last updated: 16.0816. Page consulted on: 30.04.18.
Brown, P., J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, R. Mercer and P. Roossin. (1988). "A statistical approach to French/English translation", in Proceedings of the Second International Conference on Theoretical and Methodological Issues in Machine Translation of Natural Languages (TMI 1988), June 12-14. Pittsburgh, PA. No page numbers. http://www.mt-archive.info/TMI-1988-Brown.pdf
Brynjolfsson, E. and A. McAfee. (2014). The Second Machine Age. New York: W. W. Norton & Company.
Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J. and A. Way. (2017). "Is Neural Machine Translation the New State of the Art?", The Prague Bulletin of Mathematical Linguistics, 108: 109-120.
https://doi.org/10.1515/pralin-2017-0013
Castilho, S., Doherty, S., Gaspari, F. and J. Moorkens. (2018). "Approaches to Human and Machine Translation Quality Assessment", in J. Moorkens, S. Castilho, F. Gaspari and S. Doherty (eds) Translation Quality Assessment: From Principles to Practice. Berlin: Springer, 9-38.
https://doi.org/10.1007/978-3-319-91241-7_2
Christensen, C. M. (1997). The innovator's dilemma: when new technologies cause great firms to fail. Boston, MA: Harvard Business School.
Christensen, C. M. and M. Raynor. (2003). The innovator's solution. Boston, MA: Harvard Business School.
Christensen, C. M., M. Raynor and R. McDonald. (2015). "What is Disruptive Innovation?" Harvard Business Review. 01 December 2015: 44-53.
Common Sense Advisory. (2016). Global Market Research Firm Common Sense Advisory Finds Post-edited Machine Translation (PEMT) Among Fastest-growing Segments of the Language Industry. <https://www.commonsenseadvisory.com/default.aspx?Contenttype=ArticleDet&tabID=64&moduleId=392&Aid=36546&PR=PR>. Last updated: 08.02.2016. Page consulted on: 30.04.18.
The Economist. (2011). Business Books: Aiming High. <https://www.economist.com/node/18894875>. Last updated: 30.06.11. Page consulted on: 30.04.18.
The Economist. (2015). Disrupting Mr Disrupter. <https://www-economist-com.dcu.idm.oclc.org/news/business/21679179-clay-christensen-should-not-be-given-last-word-disruptive-innovation-disrupting-mr>. Last updated: 25.11.15. Page consulted on: 30.04.18.
Enríquez Raído, V. (2013). "Teaching Translation Technologies "Everyware": Towards a Self-Discovery and Lifelong Learning Approach", Tradumàtica, 11: 275–285.
https://doi.org/10.5565/rev/tradumatica.52
Foster, R. J. (1986). Innovation: The Attacker's Advantage. New York: Summit Books.
https://doi.org/10.1007/978-3-322-83742-4
González, M., J. Giménez and J. Girona Salgado. (2014). Asiya. An Open Toolkit for Automatic Machine Translation (Meta-)Evaluation Technical Manual Version 3.0. <http://asiya.lsi.upc.edu/Asiya_technical_manual_v3.0.pdf>. Last updated February 2014. Page consulted on 12.07.18.
Hassan, H., A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Federmann, X. Huang, M. Junczys-Dowmunt, W. Lewis, M. Li, S. Liu, T-Y. Liu, R. Luo, A. Menezes, T. Qin, F. Seide, X. Tan, F. Tian, L. Wu, S. Wu, Y. Xia, D. Zhang, Z. Zhang and M. Zhou. (2018). Achieving Human Parity on Automatic Chinese to English News Translation. arXiv:1803.05567v1 [cs.CL] Last updated: 15.03.18. Page consulted on: 30.05.18.
Keen, A. (2015). The Internet is not the Answer. London: Atlantic Books.
Kenny, D. and S. Doherty. (2014). "Statistical Machine Translation in the Translation Curriculum: overcoming obstacles and empowering translators", The Interpreter and Translator Trainer 8(2): 276-294.
https://doi.org/10.1080/1750399X.2014.936112
Kenny, D. (2018). "Machine Translation", in P. Rawling and P. Wilson (eds) The Routledge Handbook of Translation and Philosophy. London and New York: Routledge, 428-445.
Kilkki, K., M. Mäntylä, K. Karhu, H. Hämmäinen and H. Ailisto. (2018). "A disruption framework", Technological Forecasting and Social Change, 129: 275-284.
https://doi.org/10.1016/j.techfore.2017.09.034
Koehn, P. (2010). Statistical Machine Translation. Cambridge: Cambridge University Press.
Lepore, J. (2014). "The Disruption Machine. What the gospel of innovation gets wrong", The New Yorker. <https://www.newyorker.com/magazine/2014/06/23/the-disruption-machine>. Last updated: 23.06.14. Page consulted on 30.05.18.
Lommel, A. (2017). Augmented Translation Puts Translators Back in the Center. <https://intelligent-information.blog/en/blog/2017/05/19/augmented-translation-puts-translators-back-in-the-center/>. Last updated: 19.05.17. Page consulted on: 30.05.18.
Lommel A., Uszkoreit, H. and A. Burchardt. (2014). "Multidimensional Quality Metrics (MQM): a framework for declaring and describing translation quality metrics'', Tradumàtica, 12: 455-463.
https://doi.org/10.5565/rev/tradumatica.77
McQuivey, J. (2014). Digital Disruption. Unleashing the Next Wave of Innovation. <http://www.softtek.com/webdocs/others/application-innovation-2014/Digital-Disruption-McQuivey.pdf>. Last updated: February 2014. Page consulted on: 30.04.18.
Moorkens, J. (2017). "Under pressure: translation in times of austerity", Perspectives, 25(3): 464-477.
https://doi.org/10.1080/0907676X.2017.1285331
Moorkens, J. and S. O'Brien. (2017). "Assessing user interface needs of post-editors of machine translation", in D. Kenny (ed.) Human Issues in Translation Technology. London and New York: Routledge, 109-130.
Moorkens, J., S. Castilho, F. Gaspari and S. Doherty (eds). (2018). Translation Quality Assessment: From Principles to Practice. Berlin: Springer.
https://doi.org/10.1007/978-3-319-91241-7
Olohan, M. (2017). "Technology, translation and society. A constructivist, critical theory approach", Target, 29(2): 264-283.
https://doi.org/10.1075/target.29.2.04olo
Pan, H.M. (2016). How BLEU Measures Translation and Why It Matters. <https://slator.com/technology/how-bleu-measures-translation-and-why-it-matters/>. Last updated: 26.11.16. Page consulted on: 12.07.18.
Papineni, K., S. Roukos, T. Ward and W-J. Zhu. (2002). "BLEU: A Method for Automatic Evaluation of Machine Translation", Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, July 2002, 311-318.
Poibeau, T. (2017). Machine Translation. Cambridge, MA/London: The MIT Press.
Pym, A. (2013). "Translation Skill-Sets in a Machine-Translation Age", Meta 58(3): 487–503.
https://doi.org/10.7202/1025047ar
Pym, A. (2016). Getting it right, forever? Deconstructing a professional discourse on the role of translators. <http://usuaris.tinet.cat/apym/on-line/training/2016_getting_it_right_2.0.pdf>. Last updated: 11.05.16. Page consulted on: 30.04.18.
qt21. (2015). Multidimensional Quality Metrics (MQM) Definition. <http://www.qt21.eu/mqm-definition/definition-2015-12-30.html#dqf-mapping>. Last updated: 30.12.15. Page consulted on: 12.07.18.
Sardon, V. (2017). Redefining the premium market. <http://www.sjbtranslations.com/redefining-the-premium-market/>. Last updated: 14.06.17. Page consulted on: 30.04.18.
Shoshan, O. (2018a). Make Neural Machine Translation Better, Faster – A New Way to Measure NMT Quality. < https://slator.com/sponsored-content/make-neural-machine-translation-better-faster-a-new-way-to-measure-nmt-quality/>. Last updated: 19.04.18. Page consulted on: 31.05.18.
Shoshan, O. (2018b). Neural MT and Blockchain Are About to Radically Transform the Translation Market. < https://slator.com/sponsored-content/neural-mt-and-blockchain-are-about-to-radically-transform-the-translation-market/> Last updated: 21.05.18. Page consulted on: 31.05.18.
Way, A. (2018). "Quality expectations of machine translation", in J. Moorkens, S. Castilho, F. Gaspari and S. Doherty (eds) Translation Quality Assessment: From Principles to Practice. Berlin: Springer, 159-178.
Publicades
Descàrregues
Drets d'autor (c) 2018 Dorothy Kenny
Aquesta obra està sota una llicència internacional Creative Commons Reconeixement 4.0.