Una disrupció incremental? La transició de la traducció automàtica estadística a la neuronal

Autors/ores

  • Dorothy Kenny Dublin City University

Resum

Si la traducció automàtica estadística (TAE) va ser una tecnologia disruptiva, la traducció automàtica neuronal (TAN) probablement és una innovació incremental, que continua una trajectòria establerta per la TAE i que inicialment s'ha avaluat en gran part igual que la seva predecessora. Mirar la TAN des d'aquest punt de vista pot ser útil per matisar el bombo que envolta el seu sorgiment.

Paraules clau

Innovació disruptiva, traducció automàtica, TA estadística, TA neuronal, mètriques per a la qualitat, mobilitat.

Referències

Bentivogli, L., A. Bisazza, M. Cettolo and M. Federico. (2016b). "Neural versus Phrase-Based Machine Translation Quality: a Case Study", in EMNLP 2016. arXiv:1608.04631v1 [cs.CL] Last updated: 16.0816. Page consulted on: 30.04.18.

Brown, P., J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, R. Mercer and P. Roossin. (1988). "A statistical approach to French/English translation", in Proceedings of the Second International Conference on Theoretical and Methodological Issues in Machine Translation of Natural Languages (TMI 1988), June 12-14. Pittsburgh, PA. No page numbers. http://www.mt-archive.info/TMI-1988-Brown.pdf

Brynjolfsson, E. and A. McAfee. (2014). The Second Machine Age. New York: W. W. Norton & Company.

Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J. and A. Way. (2017). "Is Neural Machine Translation the New State of the Art?", The Prague Bulletin of Mathematical Linguistics, 108: 109-120.

https://doi.org/10.1515/pralin-2017-0013

Castilho, S., Doherty, S., Gaspari, F. and J. Moorkens. (2018). "Approaches to Human and Machine Translation Quality Assessment", in J. Moorkens, S. Castilho, F. Gaspari and S. Doherty (eds) Translation Quality Assessment: From Principles to Practice. Berlin: Springer, 9-38.

https://doi.org/10.1007/978-3-319-91241-7_2

Christensen, C. M. (1997). The innovator's dilemma: when new technologies cause great firms to fail. Boston, MA: Harvard Business School.

Christensen, C. M. and M. Raynor. (2003). The innovator's solution. Boston, MA: Harvard Business School.

Christensen, C. M., M. Raynor and R. McDonald. (2015). "What is Disruptive Innovation?" Harvard Business Review. 01 December 2015: 44-53.

Common Sense Advisory. (2016). Global Market Research Firm Common Sense Advisory Finds Post-edited Machine Translation (PEMT) Among Fastest-growing Segments of the Language Industry. <https://www.commonsenseadvisory.com/default.aspx?Contenttype=ArticleDet&tabID=64&moduleId=392&Aid=36546&PR=PR>. Last updated: 08.02.2016. Page consulted on: 30.04.18.

The Economist. (2011). Business Books: Aiming High. <https://www.economist.com/node/18894875>. Last updated: 30.06.11. Page consulted on: 30.04.18.

The Economist. (2015). Disrupting Mr Disrupter. <https://www-economist-com.dcu.idm.oclc.org/news/business/21679179-clay-christensen-should-not-be-given-last-word-disruptive-innovation-disrupting-mr>. Last updated: 25.11.15. Page consulted on: 30.04.18.

Enríquez Raído, V. (2013). "Teaching Translation Technologies "Everyware": Towards a Self-Discovery and Lifelong Learning Approach", Tradumàtica, 11: 275–285.

https://doi.org/10.5565/rev/tradumatica.52

Foster, R. J. (1986). Innovation: The Attacker's Advantage. New York: Summit Books.

https://doi.org/10.1007/978-3-322-83742-4

González, M., J. Giménez and J. Girona Salgado. (2014). Asiya. An Open Toolkit for Automatic Machine Translation (Meta-)Evaluation Technical Manual Version 3.0. <http://asiya.lsi.upc.edu/Asiya_technical_manual_v3.0.pdf>. Last updated February 2014. Page consulted on 12.07.18.

Hassan, H., A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Federmann, X. Huang, M. Junczys-Dowmunt, W. Lewis, M. Li, S. Liu, T-Y. Liu, R. Luo, A. Menezes, T. Qin, F. Seide, X. Tan, F. Tian, L. Wu, S. Wu, Y. Xia, D. Zhang, Z. Zhang and M. Zhou. (2018). Achieving Human Parity on Automatic Chinese to English News Translation. arXiv:1803.05567v1 [cs.CL] Last updated: 15.03.18. Page consulted on: 30.05.18.

Keen, A. (2015). The Internet is not the Answer. London: Atlantic Books.

Kenny, D. and S. Doherty. (2014). "Statistical Machine Translation in the Translation Curriculum: overcoming obstacles and empowering translators", The Interpreter and Translator Trainer 8(2): 276-294.

https://doi.org/10.1080/1750399X.2014.936112

Kenny, D. (2018). "Machine Translation", in P. Rawling and P. Wilson (eds) The Routledge Handbook of Translation and Philosophy. London and New York: Routledge, 428-445.

Kilkki, K., M. Mäntylä, K. Karhu, H. Hämmäinen and H. Ailisto. (2018). "A disruption framework", Technological Forecasting and Social Change, 129: 275-284.

https://doi.org/10.1016/j.techfore.2017.09.034

Koehn, P. (2010). Statistical Machine Translation. Cambridge: Cambridge University Press.

Lepore, J. (2014). "The Disruption Machine. What the gospel of innovation gets wrong", The New Yorker. <https://www.newyorker.com/magazine/2014/06/23/the-disruption-machine>. Last updated: 23.06.14. Page consulted on 30.05.18.

Lommel, A. (2017). Augmented Translation Puts Translators Back in the Center. <https://intelligent-information.blog/en/blog/2017/05/19/augmented-translation-puts-translators-back-in-the-center/>. Last updated: 19.05.17. Page consulted on: 30.05.18.

Lommel A., Uszkoreit, H. and A. Burchardt. (2014). "Multidimensional Quality Metrics (MQM): a framework for declaring and describing translation quality metrics'', Tradumàtica, 12: 455-463.

https://doi.org/10.5565/rev/tradumatica.77

McQuivey, J. (2014). Digital Disruption. Unleashing the Next Wave of Innovation. <http://www.softtek.com/webdocs/others/application-innovation-2014/Digital-Disruption-McQuivey.pdf>. Last updated: February 2014. Page consulted on: 30.04.18.

Moorkens, J. (2017). "Under pressure: translation in times of austerity", Perspectives, 25(3): 464-477.

https://doi.org/10.1080/0907676X.2017.1285331

Moorkens, J. and S. O'Brien. (2017). "Assessing user interface needs of post-editors of machine translation", in D. Kenny (ed.) Human Issues in Translation Technology. London and New York: Routledge, 109-130.

Moorkens, J., S. Castilho, F. Gaspari and S. Doherty (eds). (2018). Translation Quality Assessment: From Principles to Practice. Berlin: Springer.

https://doi.org/10.1007/978-3-319-91241-7

Olohan, M. (2017). "Technology, translation and society. A constructivist, critical theory approach", Target, 29(2): 264-283.

https://doi.org/10.1075/target.29.2.04olo

Pan, H.M. (2016). How BLEU Measures Translation and Why It Matters. <https://slator.com/technology/how-bleu-measures-translation-and-why-it-matters/>. Last updated: 26.11.16. Page consulted on: 12.07.18.

Papineni, K., S. Roukos, T. Ward and W-J. Zhu. (2002). "BLEU: A Method for Automatic Evaluation of Machine Translation", Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, July 2002, 311-318.

Poibeau, T. (2017). Machine Translation. Cambridge, MA/London: The MIT Press.

Pym, A. (2013). "Translation Skill-Sets in a Machine-Translation Age", Meta 58(3): 487–503.

https://doi.org/10.7202/1025047ar

Pym, A. (2016). Getting it right, forever? Deconstructing a professional discourse on the role of translators. <http://usuaris.tinet.cat/apym/on-line/training/2016_getting_it_right_2.0.pdf>. Last updated: 11.05.16. Page consulted on: 30.04.18.

qt21. (2015). Multidimensional Quality Metrics (MQM) Definition. <http://www.qt21.eu/mqm-definition/definition-2015-12-30.html#dqf-mapping>. Last updated: 30.12.15. Page consulted on: 12.07.18.

Sardon, V. (2017). Redefining the premium market. <http://www.sjbtranslations.com/redefining-the-premium-market/>. Last updated: 14.06.17. Page consulted on: 30.04.18.

Shoshan, O. (2018a). Make Neural Machine Translation Better, Faster – A New Way to Measure NMT Quality. < https://slator.com/sponsored-content/make-neural-machine-translation-better-faster-a-new-way-to-measure-nmt-quality/>. Last updated: 19.04.18. Page consulted on: 31.05.18.

Shoshan, O. (2018b). Neural MT and Blockchain Are About to Radically Transform the Translation Market. < https://slator.com/sponsored-content/neural-mt-and-blockchain-are-about-to-radically-transform-the-translation-market/> Last updated: 21.05.18. Page consulted on: 31.05.18.

Way, A. (2018). "Quality expectations of machine translation", in J. Moorkens, S. Castilho, F. Gaspari and S. Doherty (eds) Translation Quality Assessment: From Principles to Practice. Berlin: Springer, 159-178.

https://doi.org/10.1007/978-3-319-91241-7_8

Biografia de l'autor/a

Dorothy Kenny, Dublin City University

Dorothy Kenny is Professor in the School of Applied Language and Intercultural Studies (SALIS) at Dublin City University, where she lectures in translation theory, translation technology, terminology and corpus linguistics.  

Publicades

2018-12-03

Descàrregues

Les dades de descàrrega encara no estan disponibles.