Avaluació humana de traducció automàtica neuronal i informe de progrés anual: estudi de cas del castellà al coreà
Resum
Paraules clau
Text complet:
PDF (English)Referències
Bahdanau, D.; Cho, K.; Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate, in: CoRR, Accepted for oral presentation at the International Conference on Learning Representations (ICLR) 2015. .
Bengio Y.; Ducharme, R.; Vincent, P. (2003). A neural probabilistic language model, in: Journal of Machine Learning Research, v. 3, pp. 1137-1155. .
British Neuroscience Association (2003). Science of the brain: an introduction for young students. . Last updated: 2003. Page consulted on date: 07.05.18.
Brown, P.; Cocke, J.; Della Pietra, S.; Della Pietra, V., Jelinek, F.; Mercer, R.; Roossin, P. (1988). A Statistical Approach to French/English Translation, in: Proceedings of the 2nd International Conference on Theoretical and Methodological Issues in Machine Translation of Natural Languages (12-14 June 1988). Center for Machine Translation, Carnegie Mellon University, Pittsburgh, Pennsylvania, the United States of America. .
https://doi.org/10.1007/978-94-009-3117-6_27
Chang, A. (2017). Analysis of the Current Development of Machine Translation and Interpretation in Korea: Focusing on Korean-Chinese Language Pairs, in: The Journal of Translation Studies v. 18, n. 2, pp. 171-206. .
Cho, K.; Merriënboer, B.; Gülcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, in: Proceedings of EMNLP 2014, Doha, Qatar, October: Association for Computational Linguistics. .
https://doi.org/10.3115/v1/D14-1179
Choi, H.; Lee, J. (2017). A study on the evaluation of Korean-English patent machine translation - Focusing on KIPRIS K2E-PAT translation, in: Interpretation & Translation, v. 19, n. 1: pp. 139-178. .
https://doi.org/10.20305/it201701139178
Devlin, J.; Zbib, R.; Huang, Z.; Lamar, T.; Schwartz, R.; Makhoul, J. (2014). Fast and Robust Neural Network Joint Models for Statistical Machine Translation, v. 1: pp. 1370-1380. .
Domingos, P. (2015). The Master Algorithm. Basic Books, 1st edition.
Görög, A. (2014). Quality evaluation today: the Dynamic Quality Framework, in: Proceedings of Translating and the Computer 36: ASLING: Proceedings. Geneva: Tradulex, pp. 155-164. .
Groves, D.; Schmidtke, D. (2009). Identification and analysis of post-editing patterns for MT. .
Kang, B.; Lee, J. (2018). The Operating Principles of Neural Machine Translation and the Accuracy of Translation - Focusing on the Chinese-Korean Translation, in: The Journal of Chinese Language and Literature, v. 73, pp. 253-295. .
https://doi.org/10.46612/kjcll.2018.09.73.253
Ki, Y. (2018). An Analysis of Errors by sentence pattern in translating Korean sentences into Chinese by Machine Translation - focus on Naver Papago machine translation and Google machine translation, in: Chinese Studies, v. 74, pp. 3-32. .
https://doi.org/10.18077/chss.2018.74..001
Kim, A. (2015). Reordering of SOV-SVO Pairs in Statistical Machine Translation: In Relation to the Korean Language. Masters thesis at Universitat Pompeu Fabra.
Kim, A. (2019). Neural Machine Translation Evaluation & Error Analysis in a Spanish-Korean Translation. Doctoral thesis at Universitat Pompeu Fabra. Retrieved from https://repositori.upf.edu/handle/10230/42853.
Kim, S.; Lee, H. (2017). A Study on Machine Translation Outputs - Korean to English Translation of Embedded Sentences, in: The Journal of Mirae English Language and Literature, v. 22, n. 4, pp. 123-147. .
Koponen, M. (2012). Comparing human perceptions of post-editing effort with post- editing operations, in: Proceedings of the 7th Workshop on Statistical Machine Translation. Montreal, Canadá: Association for Computational Linguistics, pp. 181- 190. .
Korean Citation Index . Page consulted on date: 15.03.20.
Plitt, M.; Masselot, M. (2010). A Productivity Test of Statistical Machine Translation, in: The Prague Bulletin of Mathematical Linguistics, v. 93, pp. 7-16. .
Russell, J.; Norvig, P.; Canny, F.; Malik, M.; Edwards, D. (1995). Artificial Intelligence: a Modern Approach. Vol 2, Englewood Cliffs: Prentice Hall.
Schwenk, H. (2007). Continuous space language models, in: Computer Speech & Language, v. 21, pp. 492-518. .
https://doi.org/10.1016/j.csl.2006.09.003
Skadina, I.; Pinnis, M. (2017). NMT or SMT: Case Study of a Narrow-domain English-Latvian Post-editing Project, in: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Vol 1: Long Papers), pp. 373 - 383. .
Snover, M.; Dorr, B.; Schwartz, R.; Micciulla, L.; Makhoul, J. (2006). A study of translation edit rate with targeted human annotation, in: Proceedings of the 7th Biennial Conference of the Association for Machine Translation in the Americas (AMTA-2006). Cambridge, Massachusetts: Association for Machine Translation in the Americas.
Snover, M.; Madnan,i N.; Dorr, J.; Schwartz, R. (2009). Fluency, adequacy, or HTER? Exploring different human judgments with a tunable MT metric, in: Proceedings of the Fourth Workshop on Statistical Machine Translation, pp. 259-268. .
https://doi.org/10.3115/1626431.1626480
Song, H.; Park, S. (2020). Korean Part-of-speech Tagging Based on Morpheme Generation, in: ACM Trans. Asian Low-Resour. Lang. Inf. Process. n. 19, v. 3, Article 41 (January 2020), 10 pages. .
Sutskever, I.; Vinyals, O.; Le, Q. (2014). Sequence to Sequence Learning with Neural Networks, in: Proceedings of the Neural Information Processing Systems, Vol 2 (NIPS'14), MIT Press, Cambridge, MA, USA, pp. 3104 - 3112. .
Tatsumi, M. (2009). Correlation Between Automatic Evaluation Metric Scores, Post-Editing Speed, and Some Other Factors. .
TAUS (2010). Machine Translation Post-editing Guidelines. . Last updated: 2010. Page consulted on date: 04.08.17.
Weaver, W. (1949). "Translation", Reprinted in Locke, W.; Booth, A. (eds.) Machine Translation of Languages: Fourteen Essays, Cambridge, Massachusetts: Technology Press of the Massachusetts Institute of Technology: pp. 15-33.
Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; Klingner, J.; Shah, A.; Johnson, M.; Liu, X.; Kaiser, L.; Gouws, S.; Kato, Y.; Kudo, T.; Kazawa, H.; Stevens, K.; Kurian, G.; Patil, N.; Wang, W.; Young, C.; Smith, J.; Riesa, J.; Rudnick, A.; Vinyals, O.; Corrado, G.; Hughes, M.; Dean, J. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation, in: CoRR. .
Zhechev, V. (2014). "Analysing the Post-Editing of Machine Translation at Autodesk," in O'Brien, S.; Balling, L.; Carl, M.; Simard, M.; Specia, L. (eds.) (2014), Post-editing of Machine Translation: Processes and Applications: Cambridge Scholars Publishing.
Mètriques darticles
Metrics powered by PLOS ALM