K-core: A tool for detecting the conceptual structure of research fields. The practical case of Altmetrics

Authors

Abstract

In Social Network Analysis (SNA), the K-core decomposition is used for the detection of hierarchical layers in networks. The application of the K-core measure to a keyword network allows to represent the conceptual structure of a research field. The objective of this work was to propose the application of the K-core decomposition to show the evolution of the conceptual structure of the Altmetrics research field. The methodology was developed in six phases: data collection, keyword selection, elaboration of a keyword co-occurrence matrix, generation of a keyword network, K-core decomposition and visualization of the hierarchical structure. The result was the detection of five distinct layers. A central layer with basic and densely interconnected concepts, which formed the knowledge base of the field. An intermediate layer with mediating concepts, which showed the evolution of knowledge in the field. A lateral layer with concepts that indicated the specialization of the research field. A border layer with peripheral and isolated concepts, which represented the conceptual fronts in development. The conclusion was that the hierarchical decomposition of the keyword network achieved a deeper understanding of the conceptual structure, and the evolution, of the research field.

Keywords

Social Network Analysis, Keyword network, Community detection, K-core decomposition, Altmetrics

References

Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., & Vespignani, A. (2005). K-core decomposition: A tool for the visualization of large scale networks. ArXiv preprint cs/0504107. doi: https://doi.org/10.48550/arXiv.cs/0504107

Alvarez-Hamelin, J. I., Dall'Asta, L., Barrat, A., & Vespignani, A. (2008). K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Networks and Heterogeneous Media, 3 (2), 371-393. doi: https://doi.org/10.3934/nhm.2008.3.371

Barabási, A.-L, & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286 (5439), 509-512. doi: https://doi.org/10.1126/science.286.5439.509

Borgatti, S. P. (2002). NetDraw: Software de visualización de gráficos [Software informático]. Harvard, MA: Analytic Technologies.

Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22, 155-205. doi: https://doi.org/10.1007/BF02019280

Callon, M., Rip, A., & Law, J. (1986). Mapping the Dynamics of Science and Technology. London: The Macmillan Press Ltd.

Carrington, P. J., Scott, J., & Wasserman, S. (2005). Models and Methods in Social Network Analysis, Structural Analysis in the Social Studies. Cambridge: Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511811395

Clauset, A., Moore, C., & Newman, M. E. J. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453, 98-101. doi: https://doi.org/10.1038/nature06830

Dehdarirad, T., Villarroya, A., & Barrios, M. (2014). Research trends in gender differences in higher education and science: a co-word analysis. Scientometrics, 101, 273-290. doi: https://doi.org/10.1007/s11192-014-1327-2

Dorogovtsev, S. N., Alexander V. Goltsev A. V., & Mendes, J. F. F. (2006). K-core organization of complex networks. Physical Review Letters, 96 (4), 040601. doi: https://doi.org/10.1103/PhysRevLett.96.040601

Du, N., Wu, B., Pei, X., Wang, B., & Xu, L. (2007). Community detection in large-scale social networks. En Proceedings of the 9th WebKDD Workshop, 16-25. San Jose, California, USA: ACM. doi: https://doi.org/10.1145/1348549.1348552

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486 (3-5), 75-174. doi: https://doi.org/10.1016/j.physrep.2009.11.002

Hanneman, R. (2000). Introducción a los métodos de análisis de redes sociales. Riverside, USA: Departamento de Sociología de la Universidad de California Riverside.

Kong, Y., Shi, G. Y., Wu, R. J., Zhangk, Y. C. (2019). K-core: Theories and applications. Physics Reports, 832 (11), 1-32. doi: https://doi.org/10.1016/j.physrep.2019.10.004

Leung, X. Y., Sun J., & Bai, B. (2017). Bibliometrics of social media research: A co-citation and co-word analysis. International Journal of Hospitality Management, 66, 35-45. doi: https://doi.org/10.1016/j.ijhm.2017.06.012

Leydesdorff, L., & Welbers, K. (2011). The semantic mapping of words and co-words in contexts. Journal of Informetrics, 5, 469-475. doi: https://doi.org/10.1016/j.joi.2011.01.008

Liu, G. Y., Hu, J. M., & Wang, H. L. (2012). A co-word analysis of digital library field in China. Scientometrics, 91 (1), 203-17. doi: https://doi.org/10.1007/s11192-011-0586-4

Malvestio, I., Cardillo, A., & Masuda, N. (2020). Interplay between k-core and community structure in complex networks. Scientific Reports, 10, 14702. doi: https://doi.org/10.1038/s41598-020-71426-8

Milgram, S. (1967). The Small World problem. Psychology Today, 2, 60-67.

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45, 167-256. doi: https://doi.org/10.1137/S00361445034248

Newman, M. E. J., Barabási, A.-L. & Watts, D. J. (2003). The structure and Dynamics of Networks. Princeton: Princeton University Press.

Papadopoulos, S., Kompatsiaris, Vakali, A., & Spyridonos, P. (2012). Community detection in Social Media - Performance and application considerations. Data Mining and Knowledge Discovery, 24 (3), 515-554. doi: https://doi.org/10.1007/s10618-011-0224-z

Priem J., Taraborelli D., Groth P., & Neylon C. (2011). Altmetrics: A Manifesto. [acceso 01/05/2024]. Disponible en: https://altmetrics.org/manifesto/

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabasi, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297 (5586), 1551-1555. doi: https://doi.org/10.1126/science.1073374

Sales-Pardo, M., Guimera, R., Moreira, A. A., & Amaral, L. A. N. (2007). Extracting the hierarchical organization of complex systems. Proceedings of the National Academy of Sciences (PNAS), 104, 15224–15229. doi: https://doi.org/10.1073/pnas.0703740104

Seidman, S. S. (1983). Network Structure and Minimum Degree. Social Networks, 5 (3), 269-287. doi: https://doi.org/0.1016/0378-8733(83)90028-X

Thelwall, M. (2017). Web indicators for research evaluation. A practical guide. Willinston: Morgan and Claypool. doi: https://doi.org/10.2200/S00733ED1V01Y201609ICR052

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84 (2), 523-538. doi: https://doi.org/10.1007/s11192-009-0146-3

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523-538. doi: https://doi.org/10.1007/s11192-009-0146-3

Van Raan, A. F. J. (2005). Measurement of Central Aspects of Scientific Research: Performance, Interdisciplinarity, Structure. Measurement Interdisciplinary Research and Perspectives, 3, 1-19. doi: https://doi.org/10.1207/s15366359mea0301_1

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511815478

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small world’ networks. Nature, 393, 440-442. doi: 10.1038/30918

Wuchty, S., & Almaas, E. (2005). Evolutionary cores of domain co-occurrence networks. BMC Evolutionary Biology, 5 (1):24. doi:https://doi.org/10.1186/1471-2148-5-24

Yang, W. S., & Dia, J. B. (2008). Discovering cohesive subgroups from social networks for targeted advertising. Expert System with applications, 34 (3), 2029-2038. doi: https://doi.org/10.1016/j.eswa.2007.02.028

Zitt, M., & Bassecoulard, E. (2008). Challenges for scientometric indicators: data demining, knowledge-flow measurements and diversity issues. Ethics in Science and Environmental Politics, 8, 49-60. doi: https://doi.org/10.3354/esep00092

Author Biography

Carmen Gálvez, Universidad de Granada

Profesora Titular 

Departamento Información y Documentación

Published

2025-01-28

Downloads