Análisis del fútbol de máximo nivel a partir de redes complejas

El caso de la selección argentina en el Campeonato del Mundo de Qatar 2022

Autores/as

Resumen

El objetivo del presente estudio fue estudiar el nivel de las interacciones (pases efectivos) de la selección argentina de fútbol mediante la técnica de análisis de redes, en el Campeonato del Mundo celebrado en Qatar en el año 2022. Para determinar las características de la red, el punto de partida fue el número de nodos (jugadores) y aristas (conexiones). Se hallaron los valores de la densidad de la red, la centralidad (Degree Centrality, Closeness Centrality y Betwenness Centrality) y el nivel de conexión (Clustering Coefficient, Hub, Athority, Eigenvector Centrality y PageRank). Asimismo, el espacio de interacción individual, con posesión y sin posesión del balón. Los resultados demuestran que la importancia de los jugadores está en función de la métrica utilizada para evaluar las características de la red, además de su posición en el campo. Los jugadores que presentaron una alta conectividad fueron los defensas centrales y centrocampistas, mientras que Messi, fue el jugador más importante cuando se utilizaron los parámetros para medir el nivel de agrupamiento. El comportamiento de la selección argentina ofreció patrones consistentes, recurrentes y singulares, si bien, el estado del marcador pudo haber sido un aspecto favorable a la hora de observar este tipo de comportamientos.

Palabras clave

Redes Complejas, Fútbol, Interacciones, Qatar 2022

Citas

Abt, G., Bray, J. & Benson, A. C. (2018). Measuring moderate-intensity exercise with the Aple Watch: Validation study. JMIR cardio, 2(1 e8574). https://doi.org/10.2196/cardio.8574

Aquino R., Carling C., Palucci Vieira, L. H., Martins, G., Jabor, G., Machado, J., Santiago, P., Garganta, J. & Puggina, E. (2020). Influence of Situational Variables, Team Formation, and Playing Position on Match Running Performance and Social Network Analysis in Brazilian Professional Soccer Players. Journal of Strength and Conditioning Research, 34(3), 808-817. https://doi.org/10.1519/JSC.0000000000002725

Arriaza-Ardiles, E., Martín-González, J. M., Zuniga, M. D., Sánchez-Flores, J., De Saa, Y. & García-Manso, J. M. (2018). Applying graphs and complex networks to football metric interpretation. Human Movement Science, 57, 236-243. https://doi.org/10.1016/j.humov.2017.08.022

Batalla, A. (2005). Retroalimentación y aprendizaje motor: influencia de las acciones realizadas de forma previa a la recepción del conocimiento de los resultados en el aprendizaje y la retención de habilidades motrices. [Tesis doctoral, Universidad de Barcelona]. Dipósit Digital Universitat de Barcelona. http://hdl.handle.net/2445/43053

Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment. 10008. 10.1088/1742-5468/2008/10/P10008

Brin, S. & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. https://doi.org/10.1016/S0169-7552(98)00110-X

Buldú, J. M., Busquets, J., Echegoyen, I. & Seirul.lo, F. (2019). Defining a historic football team: Using Network Science to analyze Guardiola’s F.C. Barcelona. Scientific Reports, 9(1), Artículo 13602. https://doi.org/10.1038/s41598-019-49969-2

Buldú, J. M., Busquets, J., Martínez, J. H., Herrera-Diestra, J. L., Echegoyen, I., Galeano, J. & Luque, J. (2018). Using Network Science to Analyse Football Passing Networks: Dynamics, Space, Time, and the Multilayer Nature of the Game. Frontiers in Psychology, 9, Artículo 1900. https://doi.org/10.3389/fpsyg.2018.01900

Bundio, J. & Conde, M. (2007). Exploraciones en Fútbol y Redes Sociales. Análisis del desempeño deportivo durante la Eurocopa 2004 a partir del análisis de redes sociales. Redes. Revista Hispana para el Análisis de Redes Sociales, 13(2), 1-23. https://raco.cat/index.php/Redes/article/view/76625.

Caicedo-Parada, S., Lago-Peñas, C. & Ortega-Toro, E. (2020). Passing Networks and Tactical Action in Football: A Systematic Review. International Journal of Environmental Research and Public Health, 17(18), Artículo 6649. https://doi.org/10.3390/ijerph17186649

Castellano, J. (ed.) (2008). Fútbol e innovación. Wanceulen Editorial Deportiva.

Castellano, J. & Echeazarra, I. (2019). Network-based centrality measures and physical demands in football regarding player position: Is there a connection? A preliminary study. Journal of Sports Sciences, 37(23), 2631-2638. https://doi.org/10.1080/02640414.2019.1589919

Cherven, K. (2013). Network Graph Analysis and Visualization with Gephi. Pack Publishing Ltd.

Clemente, F. M., Couceiro, M. S., Martins, F. M. L. & Mendes, R. (2013). An Online Tactical Metrics Applied to Football Game. Research Journal of Applied Sciences, Engineering and Technology, 5(5), 1700-1719. http://dx.doi.org/10.19026/rjaset.5.4926

Clemente, F. M., Martins, F. M. L, Couceiro, M. C., Mendes, R. & Figueiredo, A. J. (2014). A network approach to characterize the teammates’ interactions on football: A single match analysis. Cuadernos de Psicología del Deporte, 14(3), 141-148.

Clemente, F. M., Couceiro, M. S., Martins, F. & Mendes, R. (2015a). Using Network metrics in soccer: a macro-analysis. Journal of Human Kinetics, 45, 123-134. https://doi.org/10.1515/hukin-2015-0013

Clemente, F. M., Martins, F. M. L., Mendes, R. S. & Figueiredo, A. J. (2015b). A systemic overview of football game: The principles behind the game. Journal of Human Sport and Exercise, 9(2), 656–667. https://doi.org/10.14198/jhse.2014.92.05

Clemente, F. M., Martins, F. M., Couceiro, M. S., Mendes, R. S. & Figueiredo, A. J. (2016). Developing a tactical metric to estimate the defensive area of soccer teams: The defensive play area. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 230(2),124-132. https://doi.org/10.1177/1754337115583198

Clemente, F. M., Sarmento, H. & Aquino, R. (2020). Player position relationships with centrality in the passing network of world cup soccer teams: Win/loss match comparisons. Chaos, Solitons and Fractals, 133, Artículo 109625. https://doi.org/10.1016/j.chaos.2020.109625

Couceiro, M.S., Dias, G., Araújo, D. & Davids, K. (2016). The ARCANE Project: How an Ecological Dynamics Framework Can Enhance Performance Assessment and Prediction in Football. Sports Medicine, 46(12), 1781–1786. https://doi.org/10.1007/s40279-016-0549-2

Errekagorri, I., López del Campo, R., Resta, R. & Castellano, J. (2023). Performance Analysis of the Spanish Men’s Top and Second Professional Football Division Teams during Eight Consecutive Seasons. Sensors, 23(22), Artículo 9195. https://doi.org/10.3390/s23229115

Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A. & Waters, J. S. (2012). Basketball Teams as Strategic Networks. PLoS ONE, 7(11), e47445. https://doi.org/10.1371/journal.pone.0047445

González-Artetxe, A. & Los Arcos, A. (2021). Collective Tactical Variables. En M. Rico-González & J. Pino-Ortega (eds.), The use of applied technology in team sport (pp. 131-145). Routledge.

Grèhaigne, J. F. (1992). L'organisation du ju en football. Paris: Actio.

Grèhaigne, J. F., Bouthier, D. & David, B. (1997). Dynamic-system analysis of opponent relationships in collective actions in soccer. Journal of Sport Sciences, 15(2), 137-149. https://doi.org/10.1080/026404197367416

Gudmundsson, J. & Horton, M. (2017). Spatio-temporal analysis of team sports. ACM Computing Surveys (CSUR), 50(2), Artículo 22. https://doi.org/10.1145/3054132

Guedea, J. C., Nájera, R. J., Núñez, Ó., Candía-Luján, R. & Gastélum, G. (2019). Sistemas tácticos y resultados de competición del Mundial de Fútbol Asociación de Rusia 2018. Retos, 36, 503-509. https://doi.org/10.47197/retos.v36i36.69296

Gyarmati, L., & Hefeeda, M. (2016, 11-12 de marzo). Analyzing In-Game Movements of Soccer Players at Scale [ponencia]. MIT Sloan Sports Analytics Conference. Boston, Estados Unidos de América. https://doi.org/10.48550/arXiv.1603.05583

Hewitt, A., Greenham, G. & Norton, K. (2016). Game style in soccer: what is it and can we quantify it?, International Journal of Performance Analysis in Sport, 16(1), 355-372, https://doi.org/10.1080/24748668.2016.11868892

Hughes, M. D. & Bartlett, R. M. (2002). The use of performance indicators in performance analysis. Journal of Sports Science, 20(10), 739-754. https://doi.org/10.1080/026404102320675602.

Lamas, L., Drezner, R., Otranto, G. & Barrera, J. (2018). Analytic method for evaluating players’ decisions in team sports: Applications to the soccer goalkeeper. PLoS ONE, 13(2), e0191431. https://doi.org/10.1371/journal.pone.0191431

Landherr, A., Friedl, B. & Heidemann, J. (2010). A Critical Review of Centrality Measures in Social Networks. Business Information System Engineering, 2, 371-385. https://doi.org/10.1007/s12599-010-0127-3

Malta, P. & Travassos, B. (2014). Caraterização da transição defesa-ataque de uma equipa de Futebol. Motricidade, 10(1), 27-37. https://doi.org/10.6063/motricidade.1544

Marcelino, R., Sampaio, J., Amichay, G., Gonçalves, B., Couzin, I. D. & Nagy, M. (2020). Collective movement analysis reveals coordination tactics of team players in football matches. Chaos, Solitons & Fractals, 138, Artículo 109831. https://doi.org/10.1016/j.chaos.2020.109831

Maya Jariego, I. & Bohórquez, M. (2013). Análisis de las redes de distribución de balón en fútbol: pases de juego y pases de adaptación. REDES. Revista Hispana para el Análisis de Redes Sociales, 24(2), 135-155. https://doi.org/10.5565/rev/redes.454

Newman, M. (2010). Networks: An Introduction. Oxford Academic. https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

Pappalardo, L., Cintia, P., Rossi, A., Massuco, E., Ferragina, P., Pedreschi, D. & Giannotti, F. (2019). A public data set of spatio-temporal match events in soccer competitions. Scientific Data, 6, Artículo 236. https://doi.org/10.1038/s41597-019-0247-7

Parlebas, P. (2001). Juegos, deportes y sociedades. Léxico en praxiología motriz. Paidotribo.

Peña, J. L. & Touchette, H. (2012, 3-6 de abril). A network theory analysis of football strategies [ponencia]. Euromech Physics of Sports Conference. París, Francia. https://doi.org/10.48550/arXiv.1206.6904

Reagans, R. & Zuckerman, E. W. (2001). Networks, diversity, and productivity: The social capital of corporate R&D teams. Organization Science, 12(4), 502–517. https://doi.org/10.1287/orsc.12.4.502.10637

Ribeiro, J., Silva, P., Duarte, R., Davids, K. & Garganta, J. (2017). Team Sports Performance Analysed Through the Lens of Social Network Theory: Implications for Research and Practice. Sports Medicine, 47(9), 1689-1696. https://doi.org/10.1007/s40279-017-0695-1

Rivas, O. M., Salas, J. & Chávez, T. S. (2017). Comparación del rendimiento físico de las selecciones nacionales de Alemania y Costa Rica, de acuerdo con los parámetros de metros recorridos en alta, mediana y baja intensidad y su relación con la posición alcanzada en la Copa Mundial de Fútbol de Brasil 2014. MHSalud, 14(1). http://dx.doi.org/10.15359/mhs.14-1.3

Salmon, P. M. & McLean, S. (2020). Complexity in the beautiful game: implications for football research and practice. Science and Medicine in Football, 4(2), 162-167. https://doi.org/10.1080/24733938.2019.1699247

Sancho, L., Sanmartín, N. & de la Resurrección, C. R. (2021). Redes neuronales en el fútbol. Modelling in Science Education and Learning, 14(1), 15-32. https://doi.org/10.4995/msel.2021.15023

Sarmento, H., Marcelino, R., Anguera, M. T., Campaniço, J., Matos, N., & Leitão, J. C. (2014). Match analysis in football: a systematic review. Journal of Sport Science, 32(20), 1831-1834. https://doi.org/10.1080/02640414.2014.898852

Seirul-lo, F. (2017). El entrenamiento en los deportes de equipo. Autor Editor.

Serra-Olivares, J. & Garcia-Rubio, J. (2017). La problemática táctica, clave en el diseño representativo de tareas desde el enfoque de la pedagogía no lineal aplicada al deporte. Retos, 32, 270–278. https://doi.org/10.47197/retos.v0i32.51870

Strnad, D., Nerat, A. & Kohek, Š. (2017). Neural network models for group behavior prediction: a case of soccer match attendance. Neural Computing and Applications, 28, 287-300. https://doi.org/10.1007/s00521-015-2056-z

Taylor, N., Gastin, P. B., Mills, O. & Tran, J. (2020). Network analysis of kick-in possession chains in elite Australian football. Journal of Sports Sciences, 38(9), 1053-1061. https://doi.org/10.1080/02640414.2020.1740490

Vales, A., Blanco, H., Areces, A. & Arce, C. (2015). Perfiles de rendimiento de selecciones ganadoras y perdedoras en el Mundial de fútbol Sudáfrica 2010. Revista de Psicología del Deporte, 24(1), 111-118.

Wasserman, S. & Faust, K. (1994). Social Network Analysis. Methods and Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478

Publicado

30-05-2024

Descargas