Competències en traducció automàtica dels estudiants de grau en llengües aplicades. Informe d'un estudi exploratori
Resum
Aquest article mostra el resultat d'un experiment realitzat sobre l'ús de la traducció automàtica per part d’estudiants de grau en llengües aplicades. Partint de la premissa que ells habitualment utilitzen eines gratuïtes disponibles en línia, el nostre objectiu era entendre si realment són capaços d'identificar i corregir errors de TA i, si és així, fins a quin punt.
Paraules clau
traducció automàtica, traducció automàtica neuronal, competències en TA, ensenyament de llengües aplicades, ensenyament de traducció, aprenentatge de llengüesReferències
Bojar, O. et al. (2016). Findings of the 2016 conference on machine translation (WMT16). In: Proceedings of the 1st conference on machine translation, vol 2. Berlin, Germany, August 2016, p. 131–198. <https://www.aclweb.org/anthology/W16-2301/>. [Accessed: 20211105].
Bowker, L. (2005). Productivity vs quality? A pilot study on the impact of translation memory systems. Localisation Focus, v. 4, n. 1, pp. 13-20.
Bowker, L. (2020). Machine translation literacy instruction for international business students and business English instructors. Journal of Business & Finance Librarianship, v. 25, n. 1-2, pp. 25–43. <https://doi.org/10.1080/08963568.2020.1794739>. [Accessed: 20211105].
Bowker, L.; Buitrago Ciro, J. (2019). Machine Translation and global research: Towards improved machine translation literacy in the scholarly community. Bingley: Emerald Publishing.
Carl, M.; Schaeffer, M. (2017). Why translation is difficult: A corpus-based study of non-literality in post-editing and from-scratch translation. HERMES: Journal of Language and Communication in Business, n. 56, pp. 43–57. <https://doi.org/10.7146/hjlcb.v0i56.97201>. [Accessed: 20211105].
Castilho, S. et al. (2017a). Is neural machine translation the new state of the art? The Prague Bulletin of Mathematical Linguistics, n. 108, pp. 109–120. <https://doi.org/10.1515/pralin-2017-0013>. [Accessed: 20211105].
Castilho, S. et al. (2017b). A comparative quality evaluation of PBSMT and NMT using professional translators. In: Proceedings of the Machine Translation Summit XVI, Nagoya, Japan, September 2017, v. 1, pp. 116–131. <https://www.researchgate.net/publication/320016264_A_Comparative_Quality_Evaluation_of_PBSMT_and_NMT_using_Professional_Translators>. [Accessed: 20211107].
Clifford, J. et al. (2013). Surveying the landscape: What is the role of machine translation in language learning? @tic revista d'innovació educativa, n. 10, pp. 108–121.
De Clercq, O. et al. (2021). Uncovering machine translationese using corpus analysis techniques to distinguish between original and machine-translated French. Special issue of Translation Quarterly, n. 101, pp. 21-45.
Hassan, H. et al. (2018). Achieving human parity on automatic Chinese to English news translation. <https://arxiv.org/abs/1803.05567>. [Accessed: 20211105].
Jolley, J. R.; Maimone, L. (2015). Free online machine translation: Use and perceptions by Spanish students and instructors, In: A. J. Moeller (ed.). Learn Languages, Explore Cultures, Transform Lives Minneapolis: 2015 Central States Conference on the Teaching of Foreign Languages, pp. 181–200.
Loock, R. (2016). L’utilisation des corpus électroniques chez le traducteur professionnel: quand? comment? pour quoi faire? ILCEA, n. 27. <https://doi.org/10.4000/ilcea.3835>. [Accessed: 20211105].
Loock, R. (2019). La plus-value de la biotraduction face à la machine. Traduire, n. 241, pp. 54–65. <https://doi.org/10.4000/traduire.1848>. [Accessed: 20211105].
Loock, R. (2020). No more rage against the machine: How the corpus-based identification of machine-translationese can lead to student empowerment. The Journal of Specialised Translation, n. 34, pp. 150–170.
López Pereira, A. (2019). Traducción automática neuronal y traducción automática estadística: percepción y productividad. Revista Tradumàtica: traducció i tecnologies de la informació i la comunicació, n. 17, pp. 1–19. <https://doi.org/10.5565/rev/tradumatica.235>. [Accessed: 20211105].
Macken, L. et al. (2019). NMT’s wonderland where people turn into rabbits: A study on the comprehensibility of newly invented words in NMT output. Computational Linguistics in the Netherlands Journal, n. 9, pp. 67–80.
Meyer, I. (1988). The general bilingual dictionary as a working tool in thème. Meta: Translators’ Journal, v. 33, n. 3, pp. 368-376. <https://doi.org/10.7202/003645ar>. [Accessed: 20211105].
Moorkens, J. (2018). What to expect from Neural Machine Translation: A practical in-class translation evaluation exercise. The Interpreter and Translator Trainer, v. 12, n. 4, pp. 375–387. <https://doi.org/10.1080/1750399X.2018.1501639>. [Accessed: 20211109].
Niño, A. (2020). Exploring the use of online machine translation for independent language learning. Research in Learning Technology, v. 28. <https://doi.org/10.25304/rlt.v28.2402>. [Accessed: 20211109].
O'Brien, S.; Ehrensberger-Dow, M. (2020). MT Literacy: A cognitive view. Translation, Cognition & Behavior, v. 3, n. 2, pp 145–164. <https://doi.org/10.1075/tcb.00038.obr>. [Accessed: 20211105].
O’Neill, Errol M. (2019). Online translator: dictionary, and search engine use among L2 students. CALL-EJ: Computer-Assisted Language Learning–Electronic Journal, v. 20, n. 1, pp. 154–177.
Resende, N.; Way, A. (2021). Can Google Translate rewire your L2 English processing? Digital, v. 1, n. 1, pp. 66–85. <https://doi.org/10.3390/digital1010006>. [Accessed: 20211105].
Shopova, T. (2014). Digital literacy of students and its improvement at the university. Journal on Efficiency and Responsibility in Education and Science, v. 7, n. 2, pp. 26–32. <https://doi.org/10.7160/eriesj.2014.070201>. [Accessed: 20211103].
Tsai, S-C. (2019). Using Google Translate in EFL drafts: A preliminary investigation. Computer Assisted Language Learning, v. 32, n. 5-6, pp. 510–526. <https://doi.org/10.1080/09588221.2018.1527361>. [Accessed: 20211105].
Toral, A. et al. (2018). Attaining the unattainable? Reassessing claims of human parity in Neural Machine Translation. In: Proceedings of the 3rd conference on machine translation, Brussels, Belgium, October 2018, pp. 113–123. <https://www.aclweb.org/anthology/W18-6312/>, <https://doi.org/https://doi.org/10.18653/v1/W18-6312> [Accessed: 20211105].
Vanmassenhove, E. et al. (2019). Lost in translation: Loss and decay of linguistic richness in machine translation. In: Proceedings of Machine Translation Summit XVII v. 1: Research Track, Dublin, Ireland, August 2019, pp. 222–232. <https://www.aclweb.org/anthology/W19-6622/>. [Accessed: 20211109].
White, K. D.; Heidrich, E. (2013). Our policies, their text: German language students’ strategies with and beliefs about web-based machine translation. Die Unterrichtspraxis, v. 46, n. 2, pp. 230–250. <https://doi.org/10.1111/tger.10143>. [Accessed: 20211108].
Yamada, M. (2014). Can college students be post-editors? An investigation into employing language learners in machine translation plus post-editing. Machine Translation, v. 29, n. 1, pp. 49–67. <https://doi.org/10.1007/s10590-014-9167-7>. [Accessed: 20211105].
Yamada, M. (2019). The impact of Google Neural Machine Translation on post-editing by student translators. The Journal of Specialised Translation, n. 31, pp. 87–106. < https://jostrans.org/issue31/art_yamada.php>. [Accessed: 20211105].
Yamada, M. (2020). Language learners and non-professional translators as users. In: M. O'Hagan (ed). The Routledge Handbook of Translation Technology. London: Routledge, pp. 183–199. <https://doi.org/10.4324/9781315311258>. [Accessed: 20211106].
Publicades
Descàrregues
Drets d'autor (c) 2021 Rudy Loock, Sophie Léchauguette
Aquesta obra està sota una llicència internacional Creative Commons Reconeixement 4.0.