Traducció automàtica i crisi humanitària: anàlisi de l'eficàcia de Google Translate en la comunicació amb refugiats ucraïnesos a Espanya

Autors/ores

Resum

L’objectiu d'aquest treball és avaluar l’eficàcia de la traducció automàtica en un context d’emergència humanitària. Per això, es van realitzar entrevistes amb refugiats ucraïnesos utilitzant Google Translate. Els resultats de la nostra anàlisi mostren l'eficàcia d'aquesta eina i assenyalen els aspectes que cal millorar.

Paraules clau

traducció automàtica, Google Translate, comunicació, fluidesa, intel·ligibilitat

Referències

Alarcón Navío, E. (2003). Traducción automática versus traducción humana: tipología de errores. In: Actas del I Congreso Internacional de la Asociación Ibérica de Estudios de Traducción e Interpretación: Granada, 12-14 de Febrero de 2003. Granada: AIETI, pp. 721-738.

Arnold, D.; et al. (1994). Machine Translation: An Introductory Guide. Oxford: NCC Blackwell.

Bawa, S.; Kumar, M. (2021). A comprehensive survey on machine translation for English, Hindi and Sanskrit languages. Journal of Ambient Intelligence and Humanized Computing. <https://doi.org/10.1007/s12652-021-03479-0>. [Accessed: 20220715].

Cadwell, P.; O’Brien, S.; DeLuca, E. (2019). More than tweets: A critical reflection on developing and testing crisis machine translation technology. Translation Spaces, v. 8, n. 2, pp. 300-333. <https://doi.org/10.1075/ts.19018.cad>. [Accessed: 20220715].

Callison-Burch, C.; Fordyce, C. S.; Koehn, P.; Monz, C.; Schroeder, J. (2007). (Meta-) evaluation of machine translation. In: Proceedings of the Second Workshop on Statistical Machine Translation, Prague, June 2007, pp. 136-158. <https://doi.org/10.3115/1626355.1626373>. [Accessed: 20220711].

Canfora, C.; Ottmann, A. (2020). Risks in neural machine translation. Translation Spaces, v. 9, n. 1, pp. 58-77. <https://doi.org/10.1075/ts.00021.can>. [Accessed: 20220711].

Casanova, M. A. (2022. Cómo escolarizamos a los refugiados ucranianos. El Correo (abril). <https://www.elcorreo.com/internacional/escolarizamos-refugiados-ucranianos-20220405102947-ntrc.html>. [Accessed: 20220510].

Castilho, S. (2016) Measuring acceptability of machine translated enterprise content. PhD thesis. School of Applied Languageand Intercultural Studies, Dublin City University. <https://doras.dcu.ie/21342/1/Castilho(2016)_Acceptability_of_Machine_Translated_Enterprise_Content_PhDThesis.pdf>. [Accessed: 20220711].

Castilho, S.; Doherty, S.; Gaspari, F.; Moorkens, J. (2018). Approaches to human and machine translation quality assessment. In: Moorkens, J.; Castilho, S.; Gaspari, F.; Doherty, S. (eds.). Translation quality assessment: From Principe to Practice. Charm: Springer, pp. 9-38. <https://doi.org/10.1007/978-3-319-91241-7_2>. [Accessed: 20220712].

Castilho, S.; Moorkens, J.; Gaspari, F.; Calixto, I.; Tinsley, J.; Way, A. (2017). Is neural machine translation the new state of the art? The Prague Bulletin of Mathematical Linguistics, n. 108 (June), pp. 109-120. <http://dx.doi.org/10.1515/pralin-2017-0013>. [Accessed: 20220717].

Chatzikoumi, E. (2020). How to evaluate machine translation: A review of automated and human metrics. Natural Language Engineering, v. 26, n. 2, pp. 137-161. <http://dx.doi.org/10.1017/S1351324919000469>. [Accessed: 20220715].

Doherty S.; O’Brien S. (2014) Assessing the usability of raw machine translated output: a usercentred study using eye tracking. International Journal of Human-Computer Interaction, v. 30, n. 1, pp. 40–51. <http://dx.doi.org/10.1080/10447318.2013.802199>. [Accessed: 20220720].

España. Ministerio del Interior (2022), 26 de abril). España ha concedido 75.000 protecciones temporales a desplazados por la guerra en Ucrania. La Moncloa (26 abril). <https://www.lamoncloa.gob.es/serviciosdeprensa/notasprensa/interior/Paginas/2022/260422-desplazados-ucranianos.aspx>. [Accessed: 20220505].

Federici, F. M.; O'Brien, S. (eds.). (2020). Translation in cascading crises. 1st ed. New York: Routledge.

Fiederer, R.; O’Brien, S. (2009). Quality and machine translation: A realistic objective. The journal of Specialised translation, n. 11, pp. 52-74. <https://www.jostrans.org/issue11/art_fiederer_obrien.pdf>. [Accessed: 20220715].

Freitag, M.; Foster, G.; Grangier, D.; Ratnakar, V.; Tan, Q.; Macherey, W. (2021). Experts, errors, and context: A large-scale study of human evaluation for machine translation. Transactions of the Association for Computational Linguistics, n. 9, pp. 1460-1474. <https://doi.org/10.1162/tacl_a_00437>. [Accessed: 20220715].

Graham, Y.; Baldwin, T.; Moffat, A.; Zobel, J. (2013). Continuous measurement scales in human evaluation of machine translation. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse: Sofia, Bulgaria, August 8-9 2013, pp. 33-41. <https://aclanthology.org/W13-2305.pdf>. [Accessed: 20220711].

Hamon, O.; Hartley, A.; Popescu-Belis, A.; Choukri, K. (2007). Assessing human and automated quality judgments in the French MT evaluation campaign CESTA. In: Proceedings of Machine Translation Summit XI, pp. 231-238. <https://aclanthology.org/2007.mtsummit-papers.31.pdf>. [Accessed: 20220711].

Han, L.; Jones, Gareth, J. F.; Smeaton, A. F. (2021). Translation Quality Assessment: A Brief Survey on Manual and Automatic Methods. In: Proceedings for the First Workshop on Modelling Translation: Translatology in the Digital Age, pp. 15-33. <https://arxiv.org/pdf/2105.03311.pdf>. [Accessed: 20221012].

Helguera, D. (2022). Integración laboral para refugiados ucranianos. Radio Nervión (7 octubre). <https://www.radionervion.com/2022/10/07/integracion-laboral-para-refugiados-ucranianos/>. [Accessed: 20221012].

House, J. (2014). Translation quality assessment: Past and present. In: Translation: A multidisciplinary approach. London: Palgrave Macmillan, pp. 241-264. <http://dx.doi.org/10.1057/9781137025487_13>. [Accessed: 20220715].

Hutchins, J. (2001). Machine translation and human translation: in competition or in complementation. International Journal of Translation, n. 13 (1-2 Jan-Dec.), pp. 5-20. <https://www.translationdirectory.com/article404.htm>. [Accessed: 20220715].

Hutchins, W. J.; Somers, H. L. (1992). An Introduction to Machine Translation. London [etc.]: Academic Press.

Instituto Cervantes (2022). El Instituto Cervantes facilitará el aprendizaje del español a los refugiados ucranianos del programa de Cruz Roja Española. Instituto Cervantes. (19 mayo). <https://www.cervantes.es/sobre_instituto_cervantes/prensa/2022/noticias/aprendizaje-refugiados-ucranianos.htm#:~:text=El%20Instituto%20Cervantes%20ha%20firmado,a%20sus%20cursos%20en%20l%C3%ADnea>. [Accessed: 20220718].

International Organization for Standardisation (2002). ISO/TR 16982:2002 ergonomics of human-system interaction—usability methods supporting human centred design. Generva: International Organization for Standardisation. Available at: <http://www.iso.org/iso/catalogue_detail?csnumber=31176>. [Accessed: 20220713].

Kim, A.; Colominas Ventura, C. (2020). Human evaluation of NMT& annual progress report: A case study on Spanish to Korean. Revisa Tradumàtica: technologies de la traducció, n. 18 (desembre), pp. 33-48. <http://dx.doi.org/10.5565/rev/tradumatica.241>. [Accessed: 20220715].

Koby, G. S.; Fields, P.; Hague, D. R.; Lommel, A.; Melby, A. (2014). Defining translation quality. Revisa Tradumàtica: technologies de la traducció, n. 12 (desembre), pp. 413-420. <http://dx.doi.org/10.5565/rev/tradumatica.76>. [Accessed: 20220715].

Koehn, P. (2009). Statistical machine translation. Cambridge: Cambridge University.

Lewis, W.; Munro, R.; Vogel, S.; (2011). Crisis MT: Developing a cookbook for MT in crisis situations. In: Proceedings of the Sixth Workshop on Statistical Machine Translation (July), pp. 501-511). <https://nlp.stanford.edu/pubs/Munro2011wmt.pdf>. [Accessed: 20220715].

Matas, A. (2018). Diseño del formato de escalas tipo Likert: un estado de la cuestión. Revista electrónica de investigación educativa, v. 20, n. 1, pp. 38-47. <http://dx.doi.org/10.24320/redie.2018.20.1.1347>. [Accessed: 20220721].

Mendoza, M. H. (2017). La posedición de traducciones de textos técnicos del alemán al castellano. Tesis doctoral. Departament de Traducció i d’Interpretació i d’Estudis de l’Àsia Oriental, Universitat Autònoma de Barcelona. <https://www.tdx.cat/handle/10803/457362?locale-attribute=es#page=1>. [Accessed: 20220721].

Naciones Unidas (2022). Operational Data Portal: Ukraine Refugee Situation. <https://data.unhcr.org/en/situations/ukraine>. [Accessed: 20220622].

O’Brien, S. (2019). Translation technology and disaster management. In: The Routledge handbook of translation and technology. Routledge: Abingdon, Oxon [etc.]: Routledge, pp. 304-318.

Oliver, A. (2020). Human translation and machine translation: Specificities, uses, advantages and disadvantages. In: Arenas, C. (coord.). Translating Diversity = Traduir la diversitat. [S.l.]: Linguapax, pp. 111-130.

Przybocki, M.; Peterson, K.; Bronsart, S.; Sanders, G. (2009). The NIST 2008 Metrics for machine translation challenge-overview, methodology, metrics, and results. Machine Translation, v. 23, n. 2, pp. 71-103. <https://doi.org/10.1007/s10590-009-9065-6>. [Accessed: 20220728].

Ramlow, M. (2008). Maschinelle Übersetzungssysteme im Vergleich. Maschinelle Übersetzung und XML im Übersetzunsprozess, 19.

Reiss, K.; Vermeer, H. J. (2014). Towards a general theory of translational action: Skopos theory explained. Abingdon, Oxon [etc.]: Routledge.

Rico, C. (2017). La formación de traductores en Traducción Automática. Revista Tradumàtica: tecnologies de la traducció, n. 15 (desembre), pp. 75-96. <http://dx.doi.org/0000-0002-5056-8513>. [Accessed: 20220715].

Roturier, J. (2006). An investigation into the impact of controlled English rules on the comprehensibility, usefulness and acceptability of machine-translated technical documentation for French and German users. PhD Tesis. Dublin City University. <https://doras.dcu.ie/18190>. [Accessed: 20220715].

Specia, L.; Raj, D.; Turchi, M. (2010). Machine translation evaluation versus quality estimation. Machine translation, v. 24, n. 1, pp. 39-50. <http://dx.doi.org/10.1007/s10590-010-9077-2>. [Accessed: 20220715].

TAUS. (2013). TAUS: the language data network. <https://www.taus.net/>. [Accessed: 20220715].

TAUS. (2013). Adequacy/Fluency Guidelines. <https://www.taus.net/academy/best-practices/evaluate-best-practices/adequacy-fluencyguidelines>. [Accessed: 20220715].

Translators without Borders (2016). Translators without Borders Develops the World’s First Crisis-Specific Machine Translation System for Kurdish Languages. Accessed June 25, 2019. https://translatorswithoutborders.org/translators-without-borders-develops-worlds-first-crisisspecific-machine-translation-system-kurdish-languages/

Van Slype, G. (1979). Evaluation of the 1978 version of the SYSTRAN English-French automatic system of the commission of the European communities. The Incorporated Linguist, v. 18, n. 3 (Summer). <https://aclanthology.org/www.mt-archive.info/70/IncLinguist-1979-VanSlype.pdf>. [Accessed: 20220715].

White, J. (2003). How to Evaluate Machine Translation. In: Somers, H. (ed.). Computers and Translation: A Translator’s Guide. Amsterdam [etc.]: John Benjamins, pp. 211-244. <http://dx.doi.org/10.1075/btl.35.16whi>. [Accessed: 20220715].

Publicades

15-12-2022

Descàrregues

Les dades de descàrrega encara no estan disponibles.