La traducció automàtica en mans de tots – Adopció i canvis entre els usuaris generals de TA
Resum
En 20 anys de la Revista Tradumàtica, hem vist com la traducció automàtica ha passat a formar part de la vida quotidiana dels usuaris habituals. Partint de 17 respostes, aquest article reflexiona sobre l’ús de la TA entre els no professionals de la traducció. Després de brindar-nos les seves opinions sobre l’ús de la TA com a diccionari, per llegir notícies, per accedir a la informació o per produir textos en situacions que els usuaris perceben com de baix o alt risc, l’article s’endinsa en la conscienciació dels usuaris respecte de la precisió de la TA i la necessitat de comprometre’s amb el resultat per millorar la qualitat de les traduccions. A més, els resultats també indiquen que l’ús de la TA no només afecta la producció a la llengua meta, sinó que també influeix en la redacció dels originals que es pretenen traduir. A partir de les respostes, l’article analitza l’impacte de la TA en el marc de l’accesibilitat i la democratització, revisant com la TA i l’IA. tenen el potencial de donar Suport al canvi social, i també d’aprofundir la desigualtat, reproduir biaixos i reduir l’operativitat dels agents humans. Per últim, l’article fa una crida a una aplicació crítica i consciente de la TA per contribuir a la interacción persona-ordinador coma eina per al Desenvolupament de la societat.
Paraules clau
traducció automàtica, usuaris de TA, literacitat en TA, IA, interacció persona-ordinador, desigualtat, accessibilitat, canvi socialReferències
Anazawa, R.; Ishikawa, H.; Takahiro, K. (2013). Use of Online Machine Translation for Nursing Literature: A Questionnaire-Based Survey. The Open Nursing Journal, v. 7, pp. 22–28. <https://doi.org/10.2174/1874434601307010022>. [Accessed: 20221210].
Balashov, Y. (2020). The Translator’s Extended Mind. Minds and Machines, v. 30, n. 3, pp. 349–383. <https://doi.org/10.1007/s11023-020-09536-5>. [Accessed: 20221210].
Bapna, A.; Caswell, I.; Kreutzer, J.; Firat, O.; van Esch, D.; Siddhant, A.; et al. (2022). Building Machine Translation Systems for the Next Thousand Languages. Cornell University. <http://arxiv.org/abs/2205.03983>. [Accessed: 20221210].
Bender, E. M. (2022). On NYT Magazine on AI: Resist the Urge to be Impressed. Medium. <https://medium.com/@emilymenonbender/on-nyt-magazine-on-ai-resist-the-urge-to-be-impressed-3d92fd9a0edd>. [Accessed: 20221210].
Bender, E. M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?🦜. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623. ACM Digital Library. <https://doi.org/10.1145/3442188.3445922>. [Accessed: 20221210].
Birhane, A. (2021). Algorithmic injustice: A relational ethics approach. Patterns, v. 2, n. 2 (February). <https://doi.org/10.1016/j.patter.2021.100205>. [Accessed: 20221210].
Bowker, L.; Buitrago Ciro, J. (2019). Machine Translation and Global Research: Towards Improved Machine Translation Literacy in the Scholarly Community. 1st ed. Bingley: Emerald Publishing.
Cadwell, P.; O’Brien, S.; DeLuca, E. (2019). More than tweets: A critical reflection on developing and testing crisis machine translation technology. Translation Spaces, v. 8, n. 2, pp. 300–333. <https://doi.org/10.1075/ts.19018.cad>. [Accessed: 20221210].
Carré, A.; Rossi, C.; Sánchez-Gijón, P.; Torres-Hostench, O. (2022). Machine translation for language learners. In: D. Kenny (ed.). Machine translation for everyone: Empowering users in the age of artificial intelligence. Berlin: Language Service, pp. 187–207. Zenodo. <https://zenodo.org/record/6760024>. [Accessed: 20221210].
Castilho, S.; Moorkens, J.; Gaspari, F.; Calixto, I.; Tinsley, J.; Way, A. (2017). Is Neural Machine Translation the New State of the Art? The Prague Bulletin of Mathematical Linguistics, n. 108 (June), pp. 109–120. <https://doi.org/10.1515/pralin-2017-0013>. [Accessed: 20221210].
Ciribuco, A. (2020). Translating the village: Translation as part of the everyday lives of asylum seekers in Italy. Translation Spaces, v. 9, n. 2, pp. 179–201. <https://doi.org/10.1075/ts.20002.cir>. [Accessed: 20221210].
ELIS Research (2022). European Language Industry Survey 2022—Trends, expectations and concerns of the European language industry. <https://ec.europa.eu/info/sites/default/files/about_the_european_commission/service_standards_and_principles/documents/elis2022-report.pdf>. [Accessed: 20221210].
EMT (2022). European Master’s in Translation-EMT Competence Framework. <https://ec.europa.eu/info/resources-partners/european-masters-translation-emt/european-masters-translation-emt-explained_en#documents>. [Accessed: 20221210].
Freigang, K. H. (2001). Automation of Translation: Past, Presence, and Future. Tradumàtica: tecnologies de la traducció, n. 0, pp. 1-9. <https://ddd.uab.cat/pub/tradumatica/15787559n0/15787559n0a2.pdf>. [Accessed: 20221210].
Hassan, H.; Aue, A.; Chen, C.; Chowdhary, V.; Clark, J.; Federmann, C.; et al. (2018). Achieving Human Parity on Automatic Chinese to English News Translation. Cornell University. <http://arxiv.org/abs/1803.05567>. [Accessed: 20221210].
Läubli, S.; Castilho, S.; Neubig, G.; Sennrich, R.; Shen, Q.; Toral, A. (2020). A Set of Recommendations for Assessing Human–Machine Parity in Language Translation. Jair, Journal of Artificial Intelligence Research, n. 67, pp. 653-672. <https://doi.org/10.1613/jair.1.11371>. [Accessed: 20221210].
Läubli, S.; Sennrich, R.; Volk, M. (2018). Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation. Cornell University. <https://doi.org/10.48550/ARXIV.1808.07048>. [Accessed: 20221210].
Lee, S.-M. (2020). The impact of using machine translation on EFL students’ writing. Computer Assisted Language Learning, v. 33, n. 3, pp. 157–175. <https://doi.org/10.1080/09588221.2018.1553186>. [Accessed: 20221210].
Liu, F.; Lu, H.; Neubig, G. (2018). Handling Homographs in Neural Machine Translation. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics. pp. 1336–1345. <https://doi.org/10.18653/v1/N18-1121>. [Accessed: 20221210].
Logg, J. M.; Minson, J. A.; Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, v. 151, pp. 90–103. <https://doi.org/10.1016/j.obhdp.2018.12.005>. [Accessed: 20221210].
Miyata, R. (2021). Controlled Document Authoring in a Machine Translation Age. Oxford [etc.]: Routledge. (Routledge Studies in Translation Technology). <https://www.routledge.com/Controlled-Document-Authoring-in-a-Machine-Translation-Age/Miyata/p/book/9780367500207>. [Accessed: 20221210].
Nimdzi. (2022). 2022 Nimdzi 100 State of the Language Industry report. Mercer Island: Nimdzi. <https://www.nimdzi.com/nimdzi-100-top-lsp/>. [Accessed: 20221210].
Nitzke, J.; Hansen-Schirra, S.; Canfora, C. (2019). Risk management and post-editing competence. JoSTrans, The Journal of Specialised Translation, n. 31 (January), pp. 239–259. <https://www.jostrans.org/issue31/art_nitzke.pdf>. [Accessed: 20221210].
Nurminen, M.; Koponen, M. (2018). Governments, NGOs, MT and Accessibility. <https://lr-coordination.eu/sites/default/files/Finland/2018/14.00NuminenKoponenGovernments_NGOs_MT-and_Accessibility.pdf>. [Accessed: 20221210].
Nurminen, M.; Papula, N. (2018). Gist MT Users: A Snapshot of the Use and Users of One Online MT Tool. In: Pérez-Ortiz, J. A.; et al. (eds.). Proceedings of the 21st annual conference of the European Association for machine translation, 28-30 May 2018, Universitat d'Alacant, Spain. EAMT, pp. 199–208. <http://eamt2018.dlsi.ua.es/proceedings-eamt2018.pdf>. [Accessed: 20221210].
O’Brien, S.; Ehrensberger-Dow, M. (2020). MT Literacy: A cognitive view. Translation, Cognition & Behavior, v. 3, n. 2, pp. 145–164. <https://doi.org/10.1075/tcb.00038.obr>. [Accessed: 20221210].
O’Neill, E. M. (2019). Training students to use online translators and dictionaries: The impact on second language writing scores. International Journal of Research Studies in Language Learning, v. 8, n. 2, pp. 47-65. <https://doi.org/10.5861/ijrsll.2019.4002>. [Accessed: 20221210].
Parra Escartín, C.; Goulet, M.-J. (2020). When the Post-Editor is not a Translator Can machine translation be post-edited by academics to prepare their publications in English? In: Koponen, M.; Mossop, B.; Robert, I. S.; Scocchera, G. (eds.). Translation Revision and Post-Editing: Industry Practices and Cognitive Processes. 1st ed. Oxford [etc.]: Routledge, pp. 89-106.
Pitman, J. (2021). Google Translate: One billion installs, one billion stories. Google. <https://blog.google/products/translate/one-billion-installs/>. [Accessed: 20221210].
Poibeau, T. (2022). On ”Human Parity” and ”Super Human Performance” in Machine Translation Evaluation. In: ELRA. Language Resource and Evaluation Conference. <https://hal.archives-ouvertes.fr/hal-03738720>. [Accessed: 20221210].
Ramírez-Castañeda, V. (2020). Disadvantages in preparing and publishing scientific papers caused by the dominance of the English language in science: The case of Colombian researchers in biological sciences. PLOS ONE, v. 15, n. 9. e0238372. <https://doi.org/10.1371/journal.pone.0238372>. [Accessed: 20221210].
Sánchez-Gijón, P.; Kenny, D. (2022). Selecting and preparing texts for machine translation: Pre-editing and writing for a global audience. In: Kenny, D. (ed.). Machine translation for everyone: Empowering users in the age of artificial intelligence. Berlin: Language Service Press. (Translation and Multilingual Natural Language Processing; 18). <https://zenodo.org/record/6759980>. [Accessed: 20221210].
Stanovsky, G.; Smith, N. A.; Zettlemoyer, L.; (2019). Evaluating Gender Bias in Machine Translation. Cornell University. <http://arxiv.org/abs/1906.00591>. [Accessed: 20221210].
Steigerwald, E.; Ramírez-Castañeda, V.; Brandt, D. Y. C.; Báldi, A.; Shapiro, J. T.; Bowker, L.; Tarvin, R. D. (2022). Overcoming Language Barriers in Academia: Machine Translation Tools and a Vision for a Multilingual Future. BioScience, v. 72, n. 10, pp. 988–998. <https://doi.org/10.1093/biosci/biac062>. [Accessed: 20221210].
Toral, A. (2020). Reassessing Claims of Human Parity and Super-Human Performance in Machine Translation at WMT 2019. Cornell University. <http://arxiv.org/abs/2005.05738>. [Accessed: 20221210].
Toral, A.; Castilho, S.; Hu, K.; Way, A. (2018). Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation. Cornell University. <http://arxiv.org/abs/1808.10432>. [Accessed: 20221210].
Vanmassenhove, E.; Hardmeier, C.; Way, A. (2018). Getting Gender Right in Neural Machine Translation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pp. 3003–3008. <https://doi.org/10.18653/v1/D18-1334>. [Accessed: 20221210].
Vieira, L. N.; O’Hagan, M.; O’Sullivan, C. (2021). Understanding the societal impacts of machine translation: A critical review of the literature on medical and legal use cases. Information, Communication & Society, v. 24, n. 11, pp. 1515–1532. <https://doi.org/10.1080/1369118X.2020.1776370>. [Accessed: 20221210].
Vieira, L. N.; O’Sullivan, C.; Zhang, X.; O’Hagan, M. (2022). Machine translation in society: Insights from UK users. Language Resources and Evaluation. <https://doi.org/10.1007/s10579-022-09589-1>. [Accessed: 20221210].
Vollmer, S. M. (2020). The Digital Literacy Practices of Newly Arrived Syrian Refugees: A Spatio-Visual Linguistic Ethnography. PhD Thesis. University of Leeds. <https://etheses.whiterose.ac.uk/27877/>. [Accessed: 20221210].
Publicades
Descàrregues
Drets d'autor (c) 2022 David Orrego-Carmona
Aquesta obra està sota una llicència internacional Creative Commons Reconeixement 4.0.