Traducció automàtica: la tecnologia (in)visible de la traducció audiovisual

Autors/ores

Resum

El creixent volum de continguts audiovisuals i la necessitat de fer-los accessibles a una audiència cada vegada més global, juntament amb el marc legislatiu europeu en matèria d’accessibilitat, han generat l’augment de la demanda de continguts accessibles. En aquest sentit, la traducció automàtica és una de les tecnologies que s’integra cada vegada més en l’àmbit de la traducció audiovisual (TAV): “Audio-visual content is thus becoming just the latest in a long line of commercial products whose markets can be expanded through machine translation” (Kenny 2022:33). Tot i els beneficis i oportunitats que indubtablement ofereix aquesta tecnologia en la TAV, es plantegen dubtes, problemàtiques i reptes al seu voltant com ara la qualitat de les traduccions i les qüestions ètiques a tenir en compte respecte a l'opacitat en l’ús, propietat, permís i distribució de les dades (Moorkens 2019). El següent article pretén presentar una retrospectiva de l’ús de les tecnologies en les diverses modalitats de la TAV i l’accessibilitat als mitjans, posant èmfasi en l’ús de la traducció automàtica i en els aspectes relacionats amb la interacció persona-ordinador.

Paraules clau

traducció audiovisual, traducció automàtica, accessibilitat als mitjans, qualitat, drets d'autoria

Referències

Bartoll, E. (2012). La subtitulació: aspectes teòrics i pràctics. Barcelona: Eumo.

Burchardt, A.; Lommel, A.; Bywood, L.; Harris, K.; Popović, M. (2016). Machine translation quality in an audiovisual context. Target: International Journal of Translation Studies Audiovisual Translation, v. 28, n. 2, pp. 206–221. <https://doi.org/10.1075/target.28.2.03bur>. [Accessed: 20221209].

Bywood, L. (2020). Technology and Audiovisual Translation. In: Bogucki, Ł.; Deckert, M. (eds.). The Palgrave Handbook of Audiovisual Translation and Media Accessibility. Cham: Palgrave Macmillan. (Palgrave Studies in Translating and Interpreting), pp. 503-517. <https://doi.org/10.1007/978-3-030-42105-2_25>. [Accessed: 20221209].

Bywood, L.; Etchegoyhen, T.; Georgakopoulou, P. (2017). Embracing the threat: Machine translation as a solution for subtitling. Perspectives: Studies in Translation Theory and Practice, v. 25, n. 3, 492–508. <https://www.tandfonline.com/doi/abs/10.1080/0907676X.2017.1291695>. [Accessed: 20221209].

Ciobanu, D.; Ragni, V.; Secară, A. (2019). Speech Synthesis in the Translation Revision Process: Evidence from Error Analysis, Questionnaire and Eye-Tracking. Informatics, v. 6, n. 4, pp. 2-20. <https://doi.org/10.3390/informatics6040051>. [Accessed: 20221209].

Fernández-Torné, A.; Matamala, A. (2015). Text-to-speech versus human voiced audio description: a reception study in films dubbed into Catalan. JosTrans, The Journal of Specialised Translation, n. 24, pp. 61-88. <https://www.jostrans.org/issue24/art_fernandez.pdf>. [Accessed: 20221209].

Georgakopoulou, P. (2019a). Technologization of AVT. In: Pérez-González, L. (ed.). The Routledge Handbook of Audiovisual Translation. 1st ed. London: Routledge.

Georgakopoulou, P. (2019b). Template Files: The Holy Grail of Subtitling. JAT, The Journal of Audiovisual Translation, v. 2, n. 2, pp. 137–160. <https://doi.org/10.47476/jat.v2i2.84>. [Accessed: 20221209].

Kenny, D. (ed.). (2022). Machine translation for everyone: Empowering users in the age of artificial intelligence. Berlin: Language Science Press. (Translation and Multilingual Natural Language Processing; 18). <http://doi.org/10.5281/zenodo.6653406>. [Accessed: 20221209].

Kenny, D. (2017). Human Issues in Translation Technology. Oxon [etc.]: Routledge.

Lotz, A. D. (2014). The Television Will Be Revolutionized. 2nd ed. New York: NYU Press.

Matamala, A. (2017). Mapping audiovisual translation investigations: research approaches and the role of technology. In: M. Deckert (ed.). Audiovisual translation-research and use. Frankfurt: Peter Lang, pp. 11-28.

Matamala, A. (2015). The ALST project: Technologies for audiovisual translation. In: Proceedings of Translating and the Computer 37, London, UK, November 26-27, 2015. London: AsLing, pp. 79-89. <https://aclanthology.org/volumes/2015.tc-1/>. [Accessed: 20221209].

Mehta, S.; Azarnoush, B.; Chen, B.; Saluja, A.; Misra, V.; Bihani, B.; Kumar, R. (2020). Simplify-Then-Translate: Automatic Preprocessing for Black-Box Translation. In: 34th AAAI conference on Artificial Intelligence, pp. 8488-8495. Cornell University. <https://doi.org/10.48550/arXiv.2005.11197>. [Accessed: 20221209].

Moorkens, J.; Lewis, D. (2019). Copyright and the Reuse of Translation as Data. In: O'Hagan, Minako (ed.). The Routledge Handbook of Translation and Technology. London: Routledge, pp. 469–481.

Nikolic, K.; Bywood, L. (2021). Audiovisual Translation: The Road Ahead. Jat: Journal of Audiovisual Translation, v. 4, n. 1, pp. 50–70. <https://doi.org/10.47476/jat.v4i1.2021.156>. [Accessed: 20221209].

Oliver Gonzalez, A. (2006). Automatic Multilingual Subtitling in the eTitle Project. Proceedings of Translating and the Computer, 28, pp. 1-18.

O’Hagan, M. (2013). The impact of new technologies on translation studies: A technological turn? In: Millán, C.; Bartrina, F. (eds.). The Routledge handbook of translation studies. London: Routledge, pp. 503-518.

Orero, P.; Fernández-Torné, A.; Oncins, E. (en premsa). “The visible subtitler: Blockchain technology towards right management and minting”. Open Research Europe 2022, pp. 1-10.

Oziemblewska, M.; Szarkowska, A. (2022). The quality of templates in subtitling: A survey on current market practices and changing subtitler competences. Perspectives: Studies in Tanslation Theory and Practice, v. 30, n. 3, pp. 432-453. <http://doi.org/10.1080/0907676X2020.1791919>. [Accessed: 20221209].

Pedersen, J. (2017). The FAR model: assessing quality in interlingual subtitling. JoSTrans, The Journal of Specialised Translation, n. 28, pp. 210–229. <https://www.jostrans.org/issue28/art_pedersen.pdf>. [Accessed: 20221209].

Romero-Fresco, P.; Pöchhacker, F. (2017). Quality assessment in interlingual live subtitling: The NTR model. Linguistica Antverpiensia, New Series: Themes in Translation Studies, v. 16, pp. 149–167. <https://doi.org/10.52034/lanstts.v16i0.438>. [Accessed: 20221209].

Romero-Fresco, P.; Pérez, J. M. (2015). Accuracy rate in live subtitling: The NER model. In: Baños Piñero, R.; Díaz Cintas, J. Audiovisual Translation in a Global Context: London: Palgrave Macmillan. (Palgrave Studies in Translating and Interpreting), pp. 28-50. <https://doi.org/10.1057/9781137552891_3>. [Accessed: 20221209].

Sánchez-Gijón, P. (2016). La posedición: hacia una definición competencial del perfil y una descripción multidimensional del fenómeno. Sendebar: revista de traducción e interpretación, Universidad de Granada, n. 27, pp. 151-162.

<https://revistaseug.ugr.es/index.php/sendebar/article/view/4016/5057>.

<https://doi.org/10.30827/sendebar.v27i0.4016>. [Accessed: 20221209].

Szarkowska, A. (2011). Text-to-speech audio description: towards wider availability of audio description. Jostrans, The Journal of Specialised Translation, n. 15, 142-163. <https://www.jostrans.org/issue15/art_szarkowska.pdf>. [Accessed: 20221209].

Vercauteren, G.; Reviers, N.; Steyaert, K. (2021). Evaluating the effectiveness of machine translation of audio description: the results of two pilot studies in the English-Dutch language pair. Revista Tradumàtica: tecnologies de la traducció, n. 19, pp. 226-252. <https://doi.org/10.5565/rev/tradumatica.288>. [Accessed: 20221209].

Wilken, P.; Georgakopoulou, P.; Matusov, E. (2022). SubER: A Metric for Automatic Evaluation of Subtitle Quality. In: Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), Dublin. Association for Computational Linguistics, pp. 1-10. <http://dx.doi.org/10.18653/v1/2022.iwslt-1.1>. [Accessed: 20221209].

Publicades

22-12-2022

Descàrregues

Les dades de descàrrega encara no estan disponibles.