Mapa científico de un campo emergente en un país periférico: análisis de redes del campo de la biología sintética en Chile
Resumen
La biología sintética es una disciplina emergente y altamente promisoria, aunque la investigación en el campo se concentra en países desarrollados. En este marco, la presente investigación mapea el campo de la biología sintética en Chile con el objetivo de describir las redes de colaboración, las características de los investigadores y líneas temáticas que configuran este campo en un país periférico. El trabajo ha seguido un diseño de estudio cuantitativo no-experimental descriptivo. A partir de un corpus de 89 publicaciones con autoría de investigadores afiliados a Chile, se ha construido una red de coautoría de 375 nodos y otra de coocurrencia de palabras clave compuesta por 290 nodos. Sobre tales redes se han aplicado técnicas cienciométricas y de análisis de redes sociales. Los resultados evidencian una red de baja densidad en el campo de la biología sintética en Chile, la cual se encuentra fragmentada en 48 componentes. Asimismo, se han identificado seis líneas de investigación, entre las cuales domina un énfasis productivo, aunque también existen clústeres orientados a la ciencia básica y a la dimensión social de la biología sintética.
Palabras clave
biología sintética, mapa científico, campo científico, tecnologías emergentes, análisis de redesCitas
Akbaritabar, A., Traag, V. A., Caimo, A., & Squazzoni, F. (2020). Italian sociologists: A community of disconnected groups. Scientometrics, 124(3), 2361-2382. https://doi.org/10.1007/s11192-020-03555-w
Badar, K., Frantz, T. L., & Jabeen, M. (2016). Research performance and degree centrality in co-authorship networks: The moderating role of homophily. Aslib Journal of Information Management, 68(6), 756-771. https://doi.org/10.1108/AJIM-07-2016-0103
Barabási, A., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. https://doi.org/10.1126/science.286.5439.509
Barabási, A., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientiÿc collaborations. Physica A, 311, 590 .614. https://doi.org/10.1016/S0378-4371(02)00736-7
Barboza‐Pérez, U. E., Pérez‐Zavala, M. D. L., & Barboza‐Corona, J. E. (2025). Synthetic biology in Mexico: Brief history, current landscape, and perspectives towards a bio‐based economy. Engineering Biology, enb2.12037. https://doi.org/10.1049/enb2.12037
Bhambere, A., & Hirve, S. (2022). Overview of Social Network Analysis and Different Graph File Formats. En M. G. Galety, C. A. Atroshi, B. Balabantaray, & S. Mohanty (Eds.), Social Network Analysis. Theory and Applications (pp. 1-18). Wiley.
Bourdieu, P. (1975). The specificity of the scientific field and the social conditions of the progress of reason. Social Science Information, 14(6), 19-47. https://doi.org/10.1177/053901847501400602
Cancino, R., García, M., Bustos, F., Coloma, J., & Orozco, L. (2023). El análisis de redes sociales en los estudios de la ciencia, tecnología e innovación en América Latina. En F. Ortiz & A. Espinosa-Rada (Eds.), Redes sociales: Teoría, métodos y aplicaciones en América Latina (pp. 271-303). Centro de Investigaciones Sociológicas.
Ceballos, H. G., Garza, S. E., & Cantu, F. J. (2018). Factors influencing the formation of intra-institutional formal research groups: Group prediction from collaboration, organisational, and topical networks. Scientometrics, 114(1), 181-216. https://doi.org/10.1007/s11192-017-2561-1
CEPAL, FAO, & IICA. (2017). La bioeconomía: Oportunidades y desafíos para el desarrollo rural, agrícola y agroindustrial en América Latina y el Caribe. CEPAL/FAO/IICA.
Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5ta ed.). SAGE.
Degn, L., Franssen, T., Sørensen, M. P., & De Rijcke, S. (2018). Research groups as communities of practice—A case study of four high-performing research groups. Higher Education, 76(2), 231-246. https://doi.org/10.1007/s10734-017-0205-2
Donati, S., Barbier, I., García-Soriano, D. A., Grasso, S., Handal-Marquez, P., Malcı, K., Marlow, L., Westmann, C., & Amara, A. (2022). Synthetic biology in Europe: Current community landscape and future perspectives. Biotechnology Notes, 3, 54-61. https://doi.org/10.1016/j.biotno.2022.07.003
Edmonds, W. A., & Kennedy, T. D. (2017). An applied guide to research designs: Quantitative, qualitative, and mixed methods (2da ed.). SAGE.
Federici, F., Rudge, T., Pollak, B., Haseloff, J., & Gutiérrez, R. (2013). Synthetic Biology: Opportunities for Chilean bioindustry and education. Biological Research, 46(4), 383-393. https://doi.org/10.4067/S0716-97602013000400010
Freeman, R. B., & Huang, W. (2015). Collaborating with People Like Me: Ethnic Coauthorship within the United States. Journal of Labor Economics, 33(S1), S289-S318. https://doi.org/10.1086/678973
Gasparek, M., & Hantabal, J. (2022). De novo synthesis of synthetic biology ecosystem in Slovakia: Challenges and opportunities. Biotechnology Notes, 3, 45-49. https://doi.org/10.1016/j.biotno.2022.06.001
Gomez-Hinostroza, E. S., Gurdo, N., Alvan Vargas, M. V. G., Nikel, P. I., Guazzaroni, M.-E., Guaman, L. P., Castillo Cornejo, D. J., Platero, R., & Barba-Ostria, C. (2023). Current landscape and future directions of synthetic biology in South America. Frontiers in Bioengineering and Biotechnology, 11, 1069628. https://doi.org/10.3389/fbioe.2023.1069628
Hall, K. L., Vogel, A. L., Huang, G. C., Serrano, K. J., Rice, E. L., Tsakraklides, S. P., & Fiore, S. M. (2018). The science of team science: A review of the empirical evidence and research gaps on collaboration in science. American Psychologist, 73(4), 532-548. https://doi.org/10.1037/amp0000319
Hoffmann, C. P., Lutz, C., & Meckel, M. (2016). A relational altmetric? Network centrality on R esearch G ate as an indicator of scientific impact. Journal of the Association for Information Science and Technology, 67(4), 765-775. https://doi.org/10.1002/asi.23423
Holland, P. W., & Leinhardt, S. (1971). Transitivity in Structural Models of Small Groups. Comparative Group Studies, 2(2), 107-124. https://doi.org/10.1177/104649647100200201
Horta, H., Feng, S., & Santos, J. M. (2022). Homophily in higher education research: A perspective based on co-authorships. Scientometrics, 127(1), 523-543. https://doi.org/10.1007/s11192-021-04227-z
Hu, X., & Rousseau, R. (2015). From a word to a world: The current situation in the interdisciplinary field of synthetic biology. PeerJ, 3, e728. https://doi.org/10.7717/peerj.728
Instituto Milenio de Biología Integrativa. (2024a). Historia. https://www.ibio.cl/nosotros/quienes-somos/
Instituto Milenio de Biología Integrativa. (2024b). Líneas de investigación. https://www.ibio.cl/investigacion/lineas-de-investigacion/
Inter-American Development Bank. (2017). TecnoLatinas. Latin America riding the technology tsunami. https://publications.iadb.org/publications/english/viewer/Tecnolatinas-Latin-America-Riding-the-Technology-Tsunami.pdf
Juračka, S., Hrnčířová, B., Burýšková, B., Georgiev, D., & Dvořák, P. (2022). Building the SynBio community in the Czech Republic from the bottom up: You get what you give. Biotechnology Notes, 3, 124-134. https://doi.org/10.1016/j.biotno.2022.11.002
Kadushin, C. (2012). Understanding social networks: Theories, concepts, and findings. Oxford University Press.
Kaiser, T., Tóth, T., & Demeter, M. (2023). Publishing Trends in Political Science: How Publishing Houses, Geographical Positions, and International Collaboration Shapes Academic Knowledge Production. Publishing Research Quarterly, 39(3), 201-218. https://doi.org/10.1007/s12109-023-09957-x
Keshava, R., Mitra, R., Gope, M., & Gope, R. (2018). Synthetic Biology. En D. Barh & V. Azevedo (Eds.), Omics technologies and bioengineering. Towards improving quality of life (pp. 63-93). Academic Press. https://doi.org/10.1016/B978-0-12-804659-3.00004-X
Kim, K., Kogler, D. F., & Maliphol, S. (2024). Identifying interdisciplinary emergence in the science of science: Combination of network analysis and BERTopic. Humanities and Social Sciences Communications, 11(1), 603. https://doi.org/10.1057/s41599-024-03044-y
Knoke, D., & Yang, S. (2020). Social Network Analysis (3ra ed.). SAGE.
Knorr-Cetina, K. (1996). ¿Comunidades científicas o arenas transepistémicas de investigación? Una crítica de los modelos cuasi-económicos de la ciencia. REDES, 3(7), Article 7.
Kossinets, G., & Watts, D. J. (2009). Origins of Homophily in an Evolving Social Network. American Journal of Sociology, 115(2), 405-450. https://doi.org/10.1086/599247
Kreimer, P. (2023). Techno-Scientific Promises, Disciplinary Fields, and Social Issues in Peripheral Contexts. Science as Culture, 32(1), 83-108. https://doi.org/10.1080/09505431.2022.2101918
Kreimer, P., & Vessuri, H. (2018). Latin American science, technology, and society: A historical and reflexive approach. Tapuya: Latin American Science, Technology and Society, 1(1), 17-37. https://doi.org/10.1080/25729861.2017.1368622
Krink, N., Löchner, A., Cooper, H., Beisel, C., & Di Ventura, B. (2022). Synthetic biology landscape and community in Germany. Biotechnology Notes, 3, 8-14. https://doi.org/10.1016/j.biotno.2021.12.001
Kuhn, T. (2013). La estructura de las revoluciones cientificas (4ta ed.). Fondo de Cultura Económica.
Lee, S. S.-J., & Jabloner, A. (2017). Institutional culture is the key to team science. Nature Biotechnology, 35(12), 1212-1214. https://doi.org/10.1038/nbt.4026
Locatelli, B., Vallet, A., Tassin, J., Gautier, D., Chamaret, A., & Sist, P. (2021). Collective and individual interdisciplinarity in a sustainability research group: A social network analysis. Sustainability Science, 16(1), 37-52. https://doi.org/10.1007/s11625-020-00860-4
Love, H. B., Cross, J. E., Fosdick, B., Crooks, K. R., VandeWoude, S., & Fisher, E. R. (2021). Interpersonal relationships drive successful team science: An exemplary case-based study. Humanities and Social Sciences Communications, 8(1), 106. https://doi.org/10.1057/s41599-021-00789-8
Lu, Y. (2020). Cell-Free Synthetic Biology. Springer. https://doi.org/10.1007/978-981-13-1171-0
Marin, A., & Wellman, B. (2011). Social Network Analysis: An Introduction. En J. Scott & P. Carrington (Eds.), The SAGE Handbook of Social Network Analysis (pp. 11-25). SAGE.
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology, 27(1), 415-444. https://doi.org/10.1146/annurev.soc.27.1.415
Merton, R. (2002). Teoria y estructuras sociales (4ta ed.). Fondo de Cultura Económica.
Nadra, A., Rodríguez, P., Grunberg, R., Olalde, L., & Sánchez, I. (2020). Developing synthetic biology in Argentina: The Latin American TECNOx community as an alternative way for growth of the field. Critical Reviews in Biotechnology, 40(3), 357-364. https://doi.org/10.1080/07388551.2020.1712322
Naheem, K., & Sivaraman, P. (2022). Authorship Pattern and Research Collaboration in the Field of Synthetic Biology. Qualitative and Quantitative Methods in Libraries, 11(4), 647-668.
Naheem, K., Sivaraman, P., & Saravanan, G. (2022). A Scientometric Analysis of Global Synthetic Biology Literature. Qualitative and Quantitative Methods in Libraries, 11(3), 455-471.
Neuman, W. L. (2014). Social Research Methods: Qualitative and Quantitative Approaches (7ma ed.). Pearson Education.
Newman, M. E. J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131. https://doi.org/10.1103/PhysRevE.64.016131
Newman, M. E. J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 016132. https://doi.org/10.1103/PhysRevE.64.016132
Núcleo Milenio de Biología Sintética. (2017). Nuestro objetivo. http://www.genomicavegetal.cl/
Oldham, P., & Hall, S. (2018). Synthetic Biology—Mapping the Patent Landscape. https://doi.org/10.1101/483826
Oldham, P., Hall, S., & Burton, G. (2012). Synthetic Biology: Mapping the Scientific Landscape. PLoS ONE, 7(4), e34368. https://doi.org/10.1371/journal.pone.0034368
Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguñá, M., & Krioukov, D. (2012). Popularity versus similarity in growing networks. Nature, 489(7417), 537-540. https://doi.org/10.1038/nature11459
Parker, M., & Kingori, P. (2016). Good and Bad Research Collaborations: Researchers’ Views on Science and Ethics in Global Health Research. PLoS ONE, 11(10), e0163579. https://doi.org/10.1371/journal.pone.0163579
Pei, L., Schmidt, M., & Wei, W. (2011). Synthetic biology: An emerging research field in China. Biotechnology Advances, 29(6), 804-814. https://doi.org/10.1016/j.biotechadv.2011.06.008
Price, D. (1963). Little Science, Big Science. Columbia University Press.
Reagans, R. (2011). Close Encounters: Analyzing How Social Similarity and Propinquity Contribute to Strong Network Connections. Organization Science, 22(4), 835-849. https://doi.org/10.1287/orsc.1100.0587
Rivera, M. T., Soderstrom, S. B., & Uzzi, B. (2010). Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms. Annual Review of Sociology, 36(1), 91-115. https://doi.org/10.1146/annurev.soc.34.040507.134743
Robins, G. (2015). Doing Social Network Research: Network-based Research Design for Social Scientists. SAGE.
Sanka, I., Kusuma, A. B., Martha, F., Hendrawan, A., Pramanda, I. T., Wicaksono, A., Jati, A. P., Mazaya, M., Dwijayanti, A., Izzati, N., Maulana, M. F., & Widyaningrum, A. R. (2023). Synthetic biology in Indonesia: Potential and projection in a country with mega biodiversity. Biotechnology Notes, 4, 41-48. https://doi.org/10.1016/j.biotno.2023.02.002
Scott, J. (2017). Social network analysis (4ta ed.). SAGE.
Shapira, P., Kwon, S., & Youtie, J. (2017). Tracking the emergence of synthetic biology. Scientometrics, 112(3), 1439-1469. https://doi.org/10.1007/s11192-017-2452-5
Tu, J. (2019). What connections lead to good scientific performance? Scientometrics, 118(2), 587-604. https://doi.org/10.1007/s11192-018-02997-7
Voigt, C. (2020). Synthetic biology 2020–2030: Six commercially-available products that are changing our world. Nature Communications, 11(1), 6379. https://doi.org/10.1038/s41467-020-20122-2
Wachter, G. K. A., Gallup, O., Bayne, J., & Horsfall, L. (2022). Synthetic biology landscape in the UK. Biotechnology Notes, 3, 70-74. https://doi.org/10.1016/j.biotno.2022.07.002
Whittington, K., King, M. M., & Cingolani, I. (2024). Structure, status, and span: Gender differences in co-authorship networks across 16 region-subject pairs (2009–2013). Scientometrics, 129(1), 147-179. https://doi.org/10.1007/s11192-023-04885-1
Xie, C., Liu, C., Liu, D., & Jim, C. Y. (2024). Charting the Research Terrain for Large Old Trees: Findings from a Quantitative Bibliometric Examination in the Twenty-First Century. Forests, 15(2), 373. https://doi.org/10.3390/f15020373
Zhang, C., Bu, Y., Ding, Y., & Xu, J. (2018). Understanding scientific collaboration: Homophily, transitivity, and preferential attachment. Journal of the Association for Information Science and Technology, 69(1), 72-86. https://doi.org/10.1002/asi.23916
Publicado
Cómo citar
Descargas
Derechos de autor 2025 César Cisternas-Irarrázabal, Arturo Vallejos-Romero, Michelle Chauvet, Mauricio García-Ojeda, Minerva Cordovés-Sánchez, Felipe Sáez-Ardura

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.