Análisis de influenciadores en Twitter
Una exploración en el ámbito del mercado NASDAQ
Resumen
El propósito de este trabajo es realizar una exploración de los principales influenciadores en la red social Twitter; con relación a las comunidades de discusión enfocadas en acciones negociadas en el mercado NASDAQ. De esta manera, se espera entender cómo se comportan las redes de influencia en grupos interesados en temas bursátiles, las cuales pueden conducir a que se produzca un comportamiento de pastoreo, haciendo cuestionable la hipótesis de eficiencia de los mercados. Se parte de una revisión de literatura, a partir de lo cual se conforma un marco de referencia para comprender el sentido del análisis de redes, la importancia de influenciadores y la forma en que estos afectan el comportamiento de los inversionistas. Luego, se ejecuta el análisis de redes sociales aplicando la herramienta NodeXL, con el fin de identificar los principales usuarios y las redes de influencia que se producen en la red social Twitter. Al final, los resultados muestran que, en el contexto de los mercados de valores, los influenciadores no son sólo individuos participantes en la industria financiera con conocimientos profundos en análisis bursátil; sino que líderes de opinión como políticos o empresarios pueden llegar a tener un papel central en las comunidades de inversiónPalabras clave
Redes sociales, Mercados financieros, Comportamiento de pastoreo, Influenciadores, NodeXLCitas
Adedoyin, M., Medhat, M. & Stahl, F. (2013). A survey of data mining techniques for social media analysis. Robert Gordon University, pp.1-25.
Admed, N. & Lugovic, S. (2018). Social media analytics. Analysis and visualisation of news diffusion using NodeXL. Online Information Review, XLIII(1), pp. 149-160. https://doi.org/10.1108/OIR-03-2018-0093
Ahmed, W., Bath, P., & Demartini, G. (2006). Using Twitter as a Data Source: An Overview of Ethical, Legal, and Methodological Challenges. In The Ethics of Online Research. Advances in Research Ethics and Integrity (Vol. 13, Issue 1, pp. 14–17). https://doi.org/10.1016/j.jocn.2005.03.017
Aldahdouh, M. & Aldahdouh, R. (2019). Social media network analysis with NodeXL. International Journal of Innovative Research in Computer and Communication Engineering, LV(55), pp.1-7.
Banerjee, A. (1992). A simple model of herd behavior. Quarterly Journal of Economics, CVII(3), pp. 797-817. https://doi.org/10.2307/2118364
Bartov, E., Faurel, L. & Mohanram, P. (2018). Can Twitter help predict firm-level earnings and stock returns. The Accounting Review, XCIII(3), pp.25-57. https://doi.org/10.2308/accr-51865
Berger, E., Wenzel, M. & Wohlgemuth. (2018). Imitation-related performance outcomes in social trading. A configurational approach. Journal of Business Research, LXXXIX, pp.322-327. https://doi.org/10.1016/j.jbusres.2017.12.016
Bihari, A. & Kumar, M. (2015). Eigenvector centrality and its application in research professionals relationship network. International Conference on Futuristic trend in Computational Analysis and Knowledge Management, pp. 510-514. https://doi.org/10.1109/ablaze.2015.7154915
Bikhchandani, S. Hirshleifer, D. & Welch, I. (1998). Learning from the behavior of others. Conformity, fads and informational cascades. Journal of Economic Perspectives, XII(3), pp.151-170 https://doi.org/10.1257/jep.12.3.151
Bollen, J., Mao, H. & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science II(1), pp.1-8. https://doi.org/10.1016/j.jocs.2010.12.007
Bokunewicz, J. & Shulman, J. (2017). Influencer identification in Twitter networks of destination marketing organizations. Journal of Hospitality and Tourism Technology, VIII(1), pp.205-219. https://doi.org/10.1108/JHTT-09-2016-0057
Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29, pp.555-564. https://doi.org/10.1016/j.socnet.2007.04.002
Boyd, D. & Ellison, N. (2007). Social network sites. Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), pp. 210-230. https://doi.org/10.1111/j.1083-6101.2007.00393.x
Brambilla, M., Ceri, S., Della Valle, E., Volonterio. R & Acero, F. (2017). Extracting emerging knowledge from social media. International World Wide Web Conference Committee, pp.795-804. https://doi.org/10.1145/3038912.3052697
Burt, R. (2000). The network structure of social capital. Research in Organizational Behaviour, 22, pp.345-323. https://doi.org/10.1016/S0191-3085(00)22009-1
Cha, M., Haddadi, H., Benevenuto, F. & Gummadi, K. (2010). Measuring user influence in Twitter. The million follower fallacy. AAAI Publications, Fourth International AAAI Conference on Weblogs and Social Media, pp.10-17.
Chang, E., Cheng, J. & Khorana, A. (2000). An examination of herd behavior in equity markets. An international perspective. Journal of Banking & Finance, pp.1651-1679. https://doi.org/10.1016/S0378-4266(99)00096-5
Chakraborty, P., Rony, R. & Pria, U. (2017). Predicting stock market movement using sentiment analysis of Twitter feed. BRAC University, Dhaka, Bangladesh.
Chen, H., De, P., Hu, Y. & Hwang, B. (2014). Wisdom of crowds. The value of stock opinions transmitted through social media. Review of Financial Studies, XXVII(5), pp. 1367-1403. https://doi.org/10.1093/rfs/hhu001
Eick, S. (2005). 42 - Scalable network visualization. Visualization Handbook, pp.819-829. https://doi.org/10.1016/B978-012387582-2/50044-7
Filip, A., Pochea, M. & Pece, A. (2015). The herding behavior of investors in the CEE stocks markets. Procedia Economics and Finance, XXXII, pp.307-315. https://doi.org/10.1016/S2212-5671(15)01397-0
Groß-Klußmann, A. Königb, S. Ebner, M. (2019). Buzzwords build momentum. Global financial Twitter sentiment and the agregate stock market. Expert Systems with Applications, CXXXVI(1), pp.171-186. https://doi.org/10.1016/j.eswa.2019.06.027
Hansen, D., Shneiderman, B., Smith, M. & Himelboim, I. (2020). Analyzing social media networks with NodeXL. Insights from a connected world. Cambridge, United States : Morgan Kaufmann Publishers.
Hansen, D., Shneiderman, B., Smith, M. & Himelboim, I. (2011). Analyzing social media networks with NodeXL. Insights from a connected world. Cambridge, United States : Morgan Kaufmann Publishers.
Himelboim, I. & Smith, M. (2018). NodeXL. The International Encyclopedia of Communication Research Methods. Georgia, United States : John Wiley & Sons.
Huang, D. (21 de abril de 2015). Retail traders wield social media for investing fame. The Wall Street Journal. Recuperado de: https://www.wsj.com/articles/retail-traders-wield-social-media-for-investing-fame-1429608604
Kanungsukkasem, N. & Leelanupab, T. (2015). Finding potential influencers of a specific financial market in Twitter. 7th International Conference on Information Technology and Electrical Engineering (ICITEE), pp.414-419. https://doi.org/10.1109/ICITEED.2015.7408982
Komalasari, P. & Bowo, M. (2019). Bibliometric analysis of herding behavior in capital market. 3rd Asia Pacific International Conference of Management and Business Science, CXXXV, pp.226-232. https://doi.org/10.2991/aebmr.k.200410.035
Lai, L. & To, W. (2015). Content analysis of social media. A grounded theory approach. Journal of Electronic Commerce Research, XVI(2), pp.138-152.
Limpo, D. (2016). Finding influential Twitter users for the stock market optimized by genetic algorithm. University of Lisbon, pp.1-11.
Litterio, A., Nantes, E., Larrosa, J. & Gómez, L. (2017). Marketing and social networks. A criterion for detecting opinion leaders. European Journal of Management and Business Economics. XXVI(3), pp.347.366. https://doi.org/10.1108/EJMBE-10-2017-020
Liu, B. (2012). Sentiment analysis opinion mining. Toronto, Canada : Morgan & Claypool.
Ottaviani, M. & Sorensen, P. (2000). Herd Behavior and Investment. Comment. American Economic Review, XC (3), pp. 695-704. https://doi.org/10.1257/aer.90.3.695
Piñeiro, J., López, M. & Pérez, A. (2015). Examining the influence of stock market variables on microblogging sentiment. Journal of Business Research, LXIX(6), pp. 2087-2092. https://doi.org/10.1016/j.jbusres.2015.12.013
Puigbò, J., Sánchez, G., Casabayó, M. & Agell, N. (2014). Influencer detection approaches in social networks. A current state-of-the-art. Artificial Intelligence Research and Development. Recent Advances and Applications, pp.261-264. https://doi.org/10.3233/978-1-61499-452-7-261
Ranco, G., Aleksovski, D., Caldarelli, G., Grčar, M. & Mozetič, I. (2015). The effects of twitter sentiment on stock price returns. Plos One, X(9), pp.1-21. https://doi.org/10.1371/journal.pone.0138441
Reed, M. (2016). A study of social network effects on the stock market. Journal of Behavioral Finance, XVII(4), pp. 342-351. https://doi.org/10.1080/15427560.2016.1238371
Scharfstein, D. & Stein, J. (1990). Herd behavior and investment. The American Economic Review, pp.465-479.
Scott, J. (2000). Social network analysis. London, United Kingdom : SAGE Publications.
Sindreu, J. (4 de septiembre de 2015). How options-market amateurs might have tripped up big tech. The Wall Street Journal. Recuperado de: https://www.wsj.com/articles/how-options-market-amateurs-might-have-tripped-up-big-tech-11599213817
Shavit, A. & Shah, S. (2016). Perceived, projected, and true investment expertise. Not all experts provide expert recommendations. IEEE International Conference on Data Science and Advanced Analytics, pp.361-369. https://doi.org/10.1109/DSAA.2016.45
Sohangir, S. & Wang, D. (2019). Finding expert authors in financial forum using deep learning methods. Second IEEE International Conference on Robotic Computing (IRC), pp.1-5. https://doi.org/10.1109/IRC.2018.00082
Tsur, O. & Rappoport, A. (2012). What’s in a Hashtag? Content based prediction of the spread of ideas in microblogging communities. Proceedings of the Fight International Conference on Web Search and Web Data. pp.643-652. https://doi.org/10.1145/2124295.2124320
Vijh, M., a Chandola, D., Tikkiwal, V. & Kumar, A. (2020). Stock closing price prediction using machine learning techniques. Procedia Computer Science, 167, pp.599-606. https://doi.org/10.1016/j.procs.2020.03.326
Wang, G. & Wang, Y. (2018). Herding, social network and volatility. Economic Modelling, LXVIII, pp.74-81. https://doi.org/10.1016/j.econmod.2017.04.018
Wang, T., Wang, G., Wang, B., Sambasivan, D., Zhang, Z., Li, X., Zheng, H. & Zhao, B. (2017). Value and misinformation in collaborative investing platforms. ACM Transaction on the Web, XI(2), pp.8-32. https://doi.org/10.1145/3027487
Williams, M. L., Burnap, P., & Sloan, L. (2017). Towards an Ethical Framework for Publishing Twitter Data in Social Research: Taking into Account Users’ Views, Online Context and Algorithmic Estimation. Sociology, 51(6), 1149–1168. https://doi.org/10.1177/0038038517708140
Xu, R. (2017). How herding behavior affects our lives. A double-edged sword. Journal of Finance Research, 1(1), pp.19-21,. http://dx.doi.org/10.26549/jfr.v1i1.382
Yang, S., Mo, S. & Liu, A. (2015). Twitter financial community sentiment and its predictive relationship to stock market movement. Quantitative Finance, XV(10), pp.1637-1656. https://doi.org/10.1080/14697688.2015.1071078
Publicado
Descargas
Derechos de autor 2021 Joan Sebastián Rojas Rincón, Carlos Andres Osorio

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.