Presencia de productos orgánicos en Twitter desde la perspectiva del análisis de redes sociales
Resumen
El objetivo de esta investigación fue analizar cómo está estructurada la red de actores que hablan de productos orgánicos en Twitter y, a través de la identificación de actores clave, conocer la influencia que ejercen dentro de las redes; al hacerlo, desarrollamos ideas significativas que permitan a los usuarios de medios sociales mejorar su interacción y posición dentro de la red. Se buscaron y descargaron los datos de los términos #organico(a) y #organicos(as) por un periodo de seis meses. Para su procesamiento y estudio, se utilizó el enfoque teórico y metodológico del análisis de redes sociales (ARS). La red general se formó por 14,329 tweets únicos, publicados por 6,667 usuarios, configurando una red de 6,521 vínculos directos. Para entender con mayor detalle las interacciones, se segmentó la red con base en dos tipos de relaciones: (1) retweets y (2) menciones o respuestas, ambas redes mostraron estructuras diferentes. Se encontró que el conjunto de relaciones que estructuran la red social está asociado a productos, países y temas, así como a diversos actores clave. Además, la expresión de los orgánicos en Twitter sigue de cerca la visión general de considerarse benéficos para la salud y el medio ambiente.
Palabras clave
Productos agrícolas, Medios sociales, Actores clave, Comunidades, NodeXLCitas
Aguilar-Gallegos, N., Martínez-González, E. G., & Aguilar-Ávila, J. (2017). Análisis de redes sociales: Conceptos clave y cálculo de indicadores (Serie: Met). Chapingo, México: Universidad Autónoma Chapingo (UACh): Centro de Investigaciones Económicas, Sociales y Tecnológicas de la Agroindustria y la Agricultura Mundial (CIESTAAM).
Aguilar-Gallegos, N., Romero-García, L. E., Martínez-González, E. G., García-Sánchez, E. I., & Aguilar-Ávila, J. (2020). Dataset on dynamics of Coronavirus on Twitter. Data in Brief, 30. https://doi.org/10.1016/j.dib.2020.105684
Aguilar-Gallegos, N., Valdés-López, A., Muñoz-Rodríguez, M., Martínez-González, E. G., Santoyo-Cortés, H., & Aguilar-Ávila, J. (2019). Análisis de redes en Twitter para la inserción en comunidades: el caso de un producto agroindustrial. Interciencia, 44(2), 75–81.
Aleixandre, J. L., Aleixandre-Tudó, J. L., Bolaños-Pizarro, M., & Aleixandre-Benavent, R. (2015). Mapping the scientific research in organic farming: a bibliometric review. Scientometrics, 105(1), 295–309. https://doi.org/10.1007/s11192-015-1677-4
Anger, I., & Kittl, C. (2011). Measuring influence on Twitter. Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies - i-KNOW ’11, 1. https://doi.org/10.1145/2024288.2024326
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. BT - International AAAI Conference on Weblogs and Social. International AAAI Conference on Weblogs and Social Media, (July), 361–362. https://doi.org/10.13140/2.1.1341.1520
Bernal Jurado, E., Fernández Uclés, D., Mozas Moral, A., & Medina Viruel, M. J. (2019). Agri-food companies in the social media: a comparison of organic and non-organic firms. Economic Research-Ekonomska Istrazivanja , 32(1), 321–334. https://doi.org/10.1080/1331677X.2018.1547203
Bilal, M., Gani, A., Lali, M. I. U., Marjani, M., & Malik, N. (2019). Social Profiling: A Review, Taxonomy, and Challenges. Cyberpsychology, Behavior, and Social Networking, 22(7), 433–450. https://doi.org/10.1089/cyber.2018.0670
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10). https://doi.org/10.1088/1742-5468/2008/10/P10008
Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for Windows: software for social network analysis. Harvard, MA: Analytic Technologies.
Borgatti, Stephen P., Everett, M. G., & John, J. C. (2013). Analizing social networks. Londrés, RU: Sage.
Borgatti, Stephen P., & Halgin, D. S. (2011). On network theory. Organization Science, 22(5), 1168–1181. https://doi.org/10.1287/orsc.1100.0641
Borgatti, Stephen P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892–895. https://doi.org/10.1126/science.1165821
Boyd, D., Golder, S., & Lotan, G. (2010). Tweet, tweet, retweet: conversational aspects of retweeting on Twitter. 2010 43rd Hawaii International Conference on System Sciences, 1–10. https://doi.org/10.1109/HICSS.2010.412
Buccafurri, F., Lax, G., Nicolazzo, S., & Nocera, A. (2015). Comparing Twitter and Facebook user behavior: Privacy and other aspects. Computers in Human Behavior, 52, 87–95. https://doi.org/10.1016/j.chb.2015.05.045
Castillo de Mesa, J., Méndez Domínguez, P., Carbonero Muñoz, D., & Gómez Jacinto, L. (2021). Homofilia, polarización afectiva y desinformación en Twitter. Caso de estudio sobre la crisis migratoria #Openarms. Redes. Revista Hispana Para El Análisis de Redes Sociales, 32(2), 153–172. https://doi.org/10.5565/rev/redes.913
Congosto, M. L. (2015). Elecciones Europeas 2014: Viralidad de los mensajes en Twitter. REDES. Revista Hispana Para El Análisis de Redes Sociales, 26(1), 23–52. https://doi.org/10.5565/rev/redes.529
Cha, M., Haddadi, H., Benevenuto, F., & Gummadi, K. P. (2010). Measuring user influence in Twitter : the million follower fallacy. Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, 10–17. AAAI Press.
Chowdhury, A., & Hambly Odame, H. (2013). Social media for enhancing innovation in agri-food and rural development: current dynamics in Ontario, Canada. Journal of Rural and Community Development, 8(2), 97–119.
Del-Fresno-García, M. (2014). Haciendo visible lo invisible: Visualización de la estructura de las relaciones en red en Twitter por medio del análisis de redes sociales. El Profesional de La Información, 23(3), 246–252. https://doi.org/http://dx.doi.org/10.3145/epi.2014.may.04
Del-Fresno-García, M., Daly, A. J., & Segado Sánchez-Cabezudo, S. (2016). Identificando a los nuevos influyentes en tiempos de Internet: medios sociales y análisis de redes sociales. Reis. Revista Española de Investigaciones Sociológicas, 153, 23–40. https://doi.org/10.5477/cis/reis.153.23
Del Fresno García, M., Daly, A. J., & Supovitz, J. (2015). Desvelando climas de opinión por medio del social media mining y análisis de redes sociales en Twitter. El caso de los common core state standards. Redes. Revista Hispana Para El Análisis de Redes Sociales, 26(1), 53–75. https://doi.org/10.5565/rev/redes.531
FiBL, & IFOAM. (2018). The world of organic agriculture. Statistics and emerging trends 2018. (H. Willer & J. Lernoud, Eds.). Retrieved from https://shop.fibl.org/CHde/mwdownloads/download/link/id/1093/?ref=1
Firdaus, S. N., Ding, C., & Sadeghian, A. (2018). Retweet: A popular information diffusion mechanism – A survey paper. Online Social Networks and Media, 6, 26–40. https://doi.org/10.1016/j.osnem.2018.04.001
Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7
Freeman, L. C. (2011). The development of Social Network Analysis – with an emphasis on recent events. In J. Scott & P. J. Carrington (Eds.), The SAGE Handbook of Social Network Analysis (pp. 26–39). SAGE Publications Ltd.
Hansen, D. L., Shneiderman, B., & Smith, M. A. (2011). Analyzing social media networks with NodeXL: insights from a connected world. Elsevier.
Himelboim, I., Smith, M. A., Rainie, L., Shneiderman, B., & Espina, C. (2017). Classifying Twitter topic-networks using social network analysis. Social Media + Society, 3(1), 1–13. https://doi.org/10.1177/2056305117691545
Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J., & Stanton, J. (2007). Who are organic food consumers? A compilation and review of why people purchase organic food. Journal of Consumer Behaviour, 6(2–3), 94–110. https://doi.org/10.1002/cb.210
Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why we twitter: Understanding microblogging usage and communities. Procedings of the Joint 9th WEBKDD and 1st SNA-KDD Workshop 2007, 56–65. https://doi.org/10.1145/1348549.1348556
Juárez, N. H. (2014). Hacia un perfil del consumidor de productos orgánicos: un estudio de caso. In G. Torres Salcido (Ed.), Los sistemas agroalimentarios y el consumo local (Primera ed, pp. 118–137). México: Asociación Mexicana de Estudios Rurales.
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003
Kaushik, P., Chowdhury, A., Hambly Odame, H., & van Paassen, A. (2018). Social media for enhancing stakeholders’ innovation networks in Ontario, Canada. Journal of Agricultural & Food Information, 19(4), 331–353. https://doi.org/10.1080/10496505.2018.1430579
Kaveri, V. V., & Maheswari, V. (2017). A framework for recommending health-related topics based on topic modeling in conversational data (Twitter). Cluster Comput, 1–6. https://doi.org/10.1007/s10586-017-1263-z
Kim, J., & Hastak, M. (2018). Social network analysis: Characteristics of online social networks after a disaster. International Journal of Information Management, 38(1), 86–96. https://doi.org/10.1016/j.ijinfomgt.2017.08.003
Klerkx, L. (2020). Advisory services and transformation, plurality and disruption of agriculture and food systems: towards a new research agenda for agricultural education and extension studies. The Journal of Agricultural Education and Extension, 26(2), 131–140. https://doi.org/10.1080/1389224X.2020.1738046
Laborde, D., Martin, W., Swinnen, J., & Vos, R. (2020). COVID-19 risks to global food security. Science, 369(6503), 500–502. https://doi.org/10.1126/science.abc4765
Melović, B., Dabić, M., Rogić, S., Đurišić, V., & Prorok, V. (2020). Food for thought: Identifying the influential factors that affect consumption of organic produce in today’s youth. British Food Journal, 122(4), 1130–1155. https://doi.org/10.1108/BFJ-10-2019-0761
Meza, X. V., & Park, H. W. (2016). Organic products in Mexico and South Korea on Twitter. Journal of Business Ethics, 135(3), 587–603. https://doi.org/10.1007/s10551-014-2345-y
Novytska, I., Chychkalo-Kondratska, I., Chyzhevska, M., Sydorenko-Melnyk, H., & Tуtarenko, L. (2021). Digital marketing in the system of promotion of organic products. Wseas Transactions on Business and Economics, 18, 524–530. https://doi.org/10.37394/23207.2021.18.53
Papadopoulos, S., Zafeiriou, E., Karelakis, C., & Koutroumanidis, T. (2018). Organics or not? Prospects for uptaking organic farming. New Medit, XVII(1), 13–22. https://doi.org/10.30682/nm1801b
Paul, J., & Rana, J. (2012). Consumer behavior and purchase intention for organic food. Journal of Consumer Marketing, 29(6), 412–422. https://doi.org/10.1108/07363761211259223
Pilař, L., Stanislavská, L. K., Gresham, G., Poláková, J., & Rojík, S. (2018). Questionnaire vs. social media analysis - Case study of organic food. AGRIS On-Line Papers in Economics and Informatics, 10(3), 93–101. https://doi.org/10.7160/aol.2018.1003308
Rana, J., & Paul, J. (2017). Consumer behavior and purchase intention for organic food: A review and research agenda. Journal of Retailing and Consumer Services, 38(February), 157–165. https://doi.org/10.1016/j.jretconser.2017.06.004
Riquelme, F., & González-Cantergiani, P. (2016). Measuring user influence on Twitter: A survey. Information Processing & Management, 52(5), 949–975. https://doi.org/10.1016/j.ipm.2016.04.003
Sambiase, M. F., Giro Moori, R., Yalenti Perosa, J. M., & Benzaquen Perosa, B. (2016). Consumer behavior for organic products. Agroalimentaria, 22(43).
Smith, M. A. (2013). NodeXL: Simple network analysis for social media. Proceedings of the 2013 International Conference on Collaboration Technologies and Systems, CTS 2013, 89–93. https://doi.org/10.1109/CTS.2013.6567211
Sobaih, A. E. E., Moustafa, M. A., Ghandforoush, P., & Khan, M. (2016). To use or not to use? Social media in higher education in developing countries. Computers in Human Behavior, 58, 296–305. https://doi.org/10.1016/j.chb.2016.01.002
Stephens, E. C., Martin, G., van Wijk, M., Timsina, J., & Snow, V. (2020). Editorial: Impacts of COVID-19 on agricultural and food systems worldwide and on progress to the sustainable development goals. Agricultural Systems, 183(May), 102873. https://doi.org/10.1016/j.agsy.2020.102873
Valverde-Rebaza, J., & de Andrade Lopes, A. (2013). Exploiting behaviors of communities of twitter users for link prediction. Social Network Analysis and Mining, 3(4), 1063–1074. https://doi.org/10.1007/s13278-013-0142-8
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.
Publicado
Descargas
Derechos de autor 2021 Adriana Yaomy Lucio-Mendiola, Enrique Genaro Martínez-González, Norman Aguilar-Gallegos, Jorge Aguilar-Ávila, J. Reyes Altamirano-Cárdenas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.