Participación de los trabajadores y riesgos psicosociales en el contexto de gestión algorítmica e inteligencia artificial
Resumen
Este artículo analiza los sistemas de gestión de trabajadores basados en inteligencia artificial (GTIA) en relación con los riesgos psicosociales de los trabajadores y el papel de las estructuras de representación de los trabajadores en la prevención de estos riesgos. Se basa en la literatura existente para examinar las consecuencias derivadas de la GTIA e investiga cómo los representantes de los trabajadores pueden prevenir y mitigar los resultados no deseados. Sin embargo, la representación de los trabajadores puede enfrentarse a obstáculos a causa de la naturaleza poderosa pero enigmática de la GTIA, así como el equilibrio de poder entre empresarios y empleados por sector, donde se requeriría más investigación para encontrar soluciones.
Palabras clave
Gestión algorítmica, Inteligencia artificial, Sistemas de gestión de trabajadores, Riesgos psicosociales, Representación de los trabajadores, Plataformas digitales, Diálogo social, Negociación colectiva, Democracia industrialCitas
Aloisi, Antonio & De Stefano, Valerio (2022). Your boss is an algorithm: artificial intelligence, platform work and labour. Bloomsbury Publishing.
Baiocco, Sara; Fernández-Macías, Enrique; Rani, Uma & Pesole, A. (2022). The Algorithmic Management of work and its implications in different contexts (No. 2022/02). JRC Working Papers Series on Labour, Education and Technology. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40ed_emp/documents/publication/wcms_849220.pdf
Ball, Kirstie (2021). Electronic Monitoring and Surveillance in the Workplace. Literature review and policy recommendations. Publications Office of the European Union, Luxembourg. https://data.europa.eu/doi/10.2760/451453
Benlian, Alexander; Wiener, Martin; Cram, W. Alec; Krasnova, Hanna; Maedche, Alexander; Möhlmann, Mareike; Recker, Jan & Remus, Ulrich (2022). Algorithmic management: bright and dark sides, practical implications, and research opportunities. Business & Information Systems Engineering, 64(6), 825-839. https://doi.org/10.1007/s12599-022-00764-w
Bérastégui, Pierre (2021). Exposure to psychosocial risk factors in the gig economy: a systematic review. ETUI Research Paper-Report.
Bechter, Barbara; Brandl, Bernd & Lehr, Alex (2022). The role of the capability, opportunity, and motivation of firms for using human resource analytics to monitor employee performance: A multi‐level analysis of the organisational, market, and country context. New Technology, Work and Employment, 37(3), 398-424. https://doi.org/10.1111/ntwe.12239
Bråten, Mona; Andersen, Rolf K.; Flatland, Tord & Tranvik, Tommy (2023). Digitalisation, privacy protection and union rep participation. FAFO. https://www.fafo.no/zoo-publikasjoner/digitalisering-personvern-og-tillitsvalgtes-medvirkning
Cefaliello, Aude (2023). An Occupational Health and Safety Perspective on EU Initiatives to Regulate Platform Work: Patching up Gaps or Structural Game Changers? Journal of Work Health and Safety Regulation, 1(1), 117-137. https://doi.org/10.57523/jaohlev.21-008
Cefaliello, Aude; Moore, Phoebe V. & Donoghue, Robert (2023). Making algorithmic management safe and healthy for workers: addressing psychosocial risks in new legal provisions. European Labour Law Journal, 14(2), 192-210. https://doi.org/10.1177/20319525231167476
Chan, Victor C. H.; Ross, Gwyneth B.; Clouthier, Allison L.; Fischer, Steven L. & Graham, Ryan B. (2022). The role of machine learning in the primary prevention of work-related musculoskeletal disorders: A scoping review. Applied Ergonomics, 98. https://doi.org/10.1016/j.apergo.2021.103574
De Stefano, Valerio & Maes, Simon (2023). Algorithmic management and collective bargaining. Transfer: European Review of Labour and Research, 29(1), 21-36. https://doi.org/10.1177/10242589221141055
Doellgast, Virginia; Wagner, Ines & O’Brady, Sean (2023). Negotiating limits on algorithmic management in digitalised services: cases from Germany and Norway. Transfer: European Review of Labour and Research, 29(1), 105-120. https://doi.org/10.1177/1024258922114304
European Agency for Safety and Health at Work [EU-OSHA] (2022a). Artificial intelligence for worker management: an overview. https://osha.europa.eu/en/publications/artificial-intelligence-worker-management-overview
European Agency for Safety and Health at Work [EU-OSHA] (2022b), Artificial intelligence for worker management: implications for occupational safety and health. https://osha.europa.eu/en/publications/artificial-intelligence-worker-management-implications-occupational-safety-and-health
European Agency for Safety and Health at Work [EU-OSHA] (2022c). Third European Survey of Enterprises on New and Emerging Risks (ESENER 2019): Overview Report How European workplaces manage safety and health. https://osha.europa.eu/en/publications/artificial-intelligence-worker-management-implications-occupational-safety-and-health
European Agency for Safety and Health at Work [EU-OSHA] (2024). Worker management through AI - From technology development to the impacts on workers and their safety and health. EU-OSHA.
Eurofound (2016). Mapping key dimensions of industrial relations. Publications Office of the European Union, Luxembourg.
Eurofound (2023). Measuring key dimensions of industrial relations and industrial democracy. Publications Office of the European Union, Luxembourg.
European Company Survey (2019). Data visualization. Eurofound.
Jetha, Arif; Bakhtari, Hela; Rosella, Laura C.; Gignac, Monique A. M.; Biswas, Aviroop; Shahidi, Faraz V.; Smith, Brendan T.; Smith, Maxwell J.; Mustard, Cameron; Khan, Naimul; Arrandale, Victoria H.; Loewen, Peter J.; Zuberi, Daniyal; Dennerlein, Jack T.; Bonaccio, Silvia; Wu, Nicole; Irvin, Emma & Smith, Peter M. (2023). Artificial intelligence and the work–health interface: a research agenda for a technologically transforming world of work. American Journal of Industrial Medicine, 66(10), 815‐830. https://doi.org/10.1002/ajim.23517
Kaufman, Bruce E. (2014). Explaining Breadth and Depth of Employee Voice across Firms: A Voice Factor Demand Model. Journal of Labor Research, 35, 296-319. https://doi.org/10.1007/s12122-014-9185-5
Kellogg, Katherine C.; Valentine, Melissa A. & Christin, Angèle (2020). Algorithms at work: The new contested terrain of control. Academy of Management Annals, 14(1), 366–410. https://doi.org/10.5465/annals.2018.0174
Krämer, Clara & Cazes, Sandrine (2022). Shaping the transition: Artificial intelligence and social dialogue. OECD Social, Employment and Migration Working Papers No. 279. https://doi.org/10.1787/1815199X
Lee, Min Kyung; Kusbit, Daniel; Metsky, Evan & Dabbish, Laura (2015). Working with machines: The impact of algorithmic and data-driven management on human workers. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 1603-1612). Association for Computing Machinery. https://doi.org/10.1145/2702123.2702548
Meijerink, Jeroen & Bondarouk, Tanya (2023). The duality of algorithmic management: Toward a research agenda on HRM algorithms, autonomy and value creation. Human Resource Management Review, 33(1), Article 100876. https://doi.org/10.1016/j.hrmr.2021.100876
Molina, Oscar; Butollo, Florian; Makó, Csaba; Godino, Alejandro; Holtgrewe, Ursula; Illsoe, Anna; Junte, Sander; Larsen, Trine Pernille; Illésy, Miklós & Pap, Jószef (2023). It takes two to code: a comparative analysis of collective bargaining and artificial intelligence. Transfer: European Review of Labour and Research, 29(1), 87-104. https://doi.org/10.1177/10242589231156515
Molina, Oscar; Caprile, Maria; Arasanz, Juan & Sanz de Miguel, Pablo (2024). Worker participation and representation: the impact on risk prevention of AI worker management systems. Report. European Agency for Safety and Health at Work (EU-OSHA). http://doi.org/10.2802/7488542
Moore, Phoebe V. (2019). OSH and the future of work: Benefits and risks of artificial intelligence tools in workplaces. En Vincent G. Duffy (Ed.), Digital human modeling and applications in health, safety, ergonomics and risk management. Human body and motion. HCII 2019. Lecture notes in computer science (vol. 11581). Springer. https://doi.org/10.1007/978-3-030-22216-1_22
Mougdir, Sienna (2024). What is in the black box: The ethical implications of algorithms and transparency in the age of the GDPR. Journal of AI, Robotics & Workplace Automation, 3(1), 90-100. http://dx.doi.org/10.69554/TQEW5855
Payá Castiblanque, Raúl & Pizzi, Alejandro (2020). Presencia sindical y gestión de riesgos laborales de origen psicosocial. Un análisis del caso español. Revista Internacional de Organizaciones, 24, 325-366. https://doi.org/10.17345/rio24.325-366
Pereira, Vijay; Hadjielias, Elias; Christofi, Michael & Vrontis, Demetris (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review, 33(1), Article 100857. https://doi.org/10.1016/j.hrmr.2021.100857
Rani, Uma & Furrer, Marianne (2021). Digital labour platforms and new forms of flexible work in developing countries: Algorithmic management of work and workers. Competition & Change, 25(2), 212-236. https://doi.org/10.1177/1024529420905187
Ropponen, Annina; Hakanen, Jari J.; Hasu, Mervi & Seppänen, Laura (2019). Workers’ health, wellbeing, and safety in the digitalizing platform economy. En Seppo Poutanen, Anne Kovalainen & Petri Rouvinen (Eds.), Digital work and the platform economy (pp. 56-73). Routledge.
Shajari, Shaghayegh; Kuruvinashetti, Kirankumar;, Komeili, Amin, & Sundararaj, Uttandaraman (2023). The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors, 23(23), 9498. https://doi.org/10.3390/s23239498
Todolí-Signes, Adrián (2021). Making algorithms safe for workers: Occupational risks associated with work managed by artificial intelligence. Transfer: European Review of Labour and Research, 27(4), 433-452.
Underhill, Elsa (2022). The Decline of Trade Unions and Worker Representation. In: Paula Brough, Elliroma Gardiner & Kevin Daniels (Eds.), Handbook on Management and Employment Practices. Handbook Series in Occupational Health Sciences (Vol 3., pp. 855-871). Springer. https://doi.org/10.1007/978-3-030-29010-8_40
Walters, David (2011). Worker representation and psycho-social risks: a problematic relationship? Safety Science, 49(4), 599-606. https://doi.org/10.1016/j.ssci.2010.09.008
Webb, Sidney & Webb, Beatrice (1897). Industrial democracy, new edition in two volumes bound in one. Longmans, Green & Co.
Wood, Alex J. (2021). Algorithmic management: Consequences for work organisation and working conditions. JRC Working Papers Series on Labour, Education and Technology, No. 2021/07. European Commission, Joint Research Centre (JRC). https://hdl.handle.net/10419/233886
Wood, Alex J.; Graham, Mark; Lehdonvirta, Vili & Hjorth, Isis (2019). Good gig, bad gig: autonomy and algorithmic control in the global gig economy. Work, Employment and Society, 33(1), 56-75. https://doi.org/10.1177/0950017018785616
Publicado
Cómo citar
Descargas
Derechos de autor 2024 Óscar Molina Romo, Pablo Sanz de Miguel, Maria Caprile Elola-Olaso

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.